On functional data analysis and related topics
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2021.104861
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Germán Aneiros & Ricardo Cao & Philippe Vieu, 2019. "Editorial on the special issue on Functional Data Analysis and Related Topics," Computational Statistics, Springer, vol. 34(2), pages 447-450, June.
- Menafoglio, Alessandra & Secchi, Piercesare, 2017. "Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics," European Journal of Operational Research, Elsevier, vol. 258(2), pages 401-410.
- Boudou, A. & Dauxois, J., 1994. "Principal Component Analysis for a Stationary Random Function Defined on a Locally Compact Abelian Group," Journal of Multivariate Analysis, Elsevier, vol. 51(1), pages 1-16, October.
- Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2021. "Testing serial independence with functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 603-629, September.
- Germán Aneiros & Philippe Vieu, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 27-32, March.
- Joydeep Chowdhury & Probal Chaudhuri, 2020. "Convergence rates for kernel regression in infinite-dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 471-509, April.
- Kim, Joonpyo & Oh, Hee-Seok, 2020. "Pseudo-quantile functional data clustering," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
- Zhang, Yingying & Wang, Huixia Judy & Zhu, Zhongyi, 2019. "Quantile-regression-based clustering for panel data," Journal of Econometrics, Elsevier, vol. 213(1), pages 54-67.
- Coffey Norma & Hinde John, 2011. "Analyzing Time-Course Microarray Data Using Functional Data Analysis - A Review," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-32, May.
- Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
- Allam, Abdelaziz & Mourid, Tahar, 2019. "Optimal rate for covariance operator estimators of functional autoregressive processes with random coefficients," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 130-137.
- Aue, Alexander & Gabrys, Robertas & Horváth, Lajos & Kokoszka, Piotr, 2009. "Estimation of a change-point in the mean function of functional data," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2254-2269, November.
- Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
- Jiménez-Gamero, M. Dolores & Franco-Pereira, Alba M., 2021. "Testing the equality of a large number of means of functional data," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
- Bernardi, Mara S. & Carey, Michelle & Ramsay, James O. & Sangalli, Laura M., 2018. "Modeling spatial anisotropy via regression with partial differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 15-30.
- Wang, Bingling & Li, Yingxing & Härdle, Wolfgang Karl, 2022.
"K-expectiles clustering,"
Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Wang, Bingling & Li, Yingxing & Härdle, Wolfgang, 2021. "K-expectiles clustering," IRTG 1792 Discussion Papers 2021-003, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Kara, Lydia-Zaitri & Laksaci, Ali & Rachdi, Mustapha & Vieu, Philippe, 2017. "Data-driven kNN estimation in nonparametric functional data analysis," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 176-188.
- Lydia Kara-Zaitri & Ali Laksaci & Mustapha Rachdi & Philippe Vieu, 2017. "Uniform in bandwidth consistency for various kernel estimators involving functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(1), pages 85-107, January.
- Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
- Germán Aneiros & Philippe Vieu, 2015. "Partial linear modelling with multi-functional covariates," Computational Statistics, Springer, vol. 30(3), pages 647-671, September.
- Tomasz Górecki & Mirosław Krzyśko & Łukasz Waszak & Waldemar Wołyński, 2018. "Selected statistical methods of data analysis for multivariate functional data," Statistical Papers, Springer, vol. 59(1), pages 153-182, March.
- Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
- Horváth, Lajos & Rice, Gregory, 2015. "Testing for independence between functional time series," Journal of Econometrics, Elsevier, vol. 189(2), pages 371-382.
- G. Aneiros & P. Vieu, 2016. "Sparse nonparametric model for regression with functional covariate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 839-859, October.
- Yen-Chi Chen & Christopher R. Genovese & Larry Wasserman, 2017. "Density Level Sets: Asymptotics, Inference, and Visualization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1684-1696, October.
- Aurore Delaigle & Peter Hall & Tung Pham, 2019. "Clustering functional data into groups by using projections," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 271-304, April.
- Mariano Valderrama, 2007. "An overview to modelling functional data," Computational Statistics, Springer, vol. 22(3), pages 331-334, September.
- Delicado, Pedro & Vieu, Philippe, 2015. "Optimal level sets for bivariate density representation," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 1-18.
- Vieu, Philippe, 2018. "On dimension reduction models for functional data," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 134-138.
- Kokoszka, Piotr & Oja, Hanny & Park, Byeong & Sangalli, Laura, 2017. "Special issue on functional data analysis," Econometrics and Statistics, Elsevier, vol. 1(C), pages 99-100.
- Ren, Rui & Lu, Meng-Jou & Li, Yingxing & Härdle, Wolfgang, 2021. "Financial Risk Meter based on expectiles," IRTG 1792 Discussion Papers 2021-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Germán Aneiros & Philippe Vieu, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 27-32, March.
- Manuel Febrero-Bande & Pedro Galeano & Wenceslao González-Manteiga, 2017. "Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study," International Statistical Review, International Statistical Institute, vol. 85(1), pages 61-83, April.
- Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
- Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2020. "Change-point methods for multivariate time-series: paired vectorial observations," Statistical Papers, Springer, vol. 61(4), pages 1351-1383, August.
- Chiou, Jeng-Min & Yang, Ya-Fang & Chen, Yu-Ting, 2016. "Multivariate functional linear regression and prediction," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 301-312.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Valentina Masarotto & Guido Masarotto, 2024. "Covariance‐based soft clustering of functional data based on the Wasserstein–Procrustes metric," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 485-512, June.
- Kokoszka, Piotr & Kulik, Rafał, 2023. "Principal component analysis of infinite variance functional data," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
- Qiu, Zhiping & Fan, Jiangyuan & Zhang, Jin-Ting & Chen, Jianwei, 2024. "Tests for equality of several covariance matrix functions for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
- Caponera, Alessia & Panaretos, Victor M., 2022. "On the rate of convergence for the autocorrelation operator in functional autoregression," Statistics & Probability Letters, Elsevier, vol. 189(C).
- Smida, Zaineb & Laurent, Thibault & Cucala, Lionel, 2024. "A Hotelling spatial scan statistic for functional data: application to economic and climate data," TSE Working Papers 24-1583, Toulouse School of Economics (TSE).
- Emilio Carrizosa & Jasone Ramírez-Ayerbe & Dolores Romero Morales, 2024. "A new model for counterfactual analysis for functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(4), pages 981-1000, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
- Vieu, Philippe, 2018. "On dimension reduction models for functional data," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 134-138.
- Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Shuyu Meng & Zhensheng Huang, 2024. "Variable Selection in Semi-Functional Partially Linear Regression Models with Time Series Data," Mathematics, MDPI, vol. 12(17), pages 1-23, September.
- Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Belli, Edoardo, 2022. "Smoothly adaptively centered ridge estimator," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Zhou, Jie, 2011. "Maximum likelihood ratio test for the stability of sequence of Gaussian random processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2114-2127, June.
- Wang, Bingling & Li, Yingxing & Härdle, Wolfgang Karl, 2022.
"K-expectiles clustering,"
Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Wang, Bingling & Li, Yingxing & Härdle, Wolfgang, 2021. "K-expectiles clustering," IRTG 1792 Discussion Papers 2021-003, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Mohammedi, Mustapha & Bouzebda, Salim & Laksaci, Ali, 2021. "The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
- Zhang, Xiaoke & Wang, Jane-Ling, 2018. "Optimal weighting schemes for longitudinal and functional data," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 165-170.
- Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
- Chen, Di-Rong & Cheng, Kun & Liu, Chao, 2022. "Framelet block thresholding estimator for sparse functional data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Novo, Silvia & Aneiros, Germán & Vieu, Philippe, 2021. "A kNN procedure in semiparametric functional data analysis," Statistics & Probability Letters, Elsevier, vol. 171(C).
- Febrero-Bande, Manuel & Galeano, Pedro & González-Manteiga, Wenceslao, 2019. "Estimation, imputation and prediction for the functional linear model with scalar response with responses missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 91-103.
- Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Bouzebda, Salim & Chaouch, Mohamed, 2022. "Uniform limit theorems for a class of conditional Z-estimators when covariates are functions," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Mustapha Rachdi & Ali Laksaci & Zoulikha Kaid & Abbassia Benchiha & Fahimah A. Al‐Awadhi, 2021. "k‐Nearest neighbors local linear regression for functional and missing data at random," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(1), pages 42-65, February.
- Litimein, Ouahiba & Laksaci, Ali & Ait-Hennani, Larbi & Mechab, Boubaker & Rachdi, Mustapha, 2024. "Asymptotic normality of the local linear estimator of the functional expectile regression," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
- Bodnar, Taras & Okhrin, Ostap & Parolya, Nestor, 2019.
"Optimal shrinkage estimator for high-dimensional mean vector,"
Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 63-79.
- Taras Bodnar & Ostap Okhrin & Nestor Parolya, 2016. "Optimal Shrinkage Estimator for High-Dimensional Mean Vector," Papers 1610.09292, arXiv.org, revised Jul 2018.
- Qiu, Zhiping & Fan, Jiangyuan & Zhang, Jin-Ting & Chen, Jianwei, 2024. "Tests for equality of several covariance matrix functions for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
More about this item
Keywords
Functional analysis; High-dimensional statistics; Survey;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:189:y:2022:i:c:s0047259x21001391. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.