IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i22p4322-d976311.html
   My bibliography  Save this article

Optimal Estimation of Large Functional and Longitudinal Data by Using Functional Linear Mixed Model

Author

Listed:
  • Mengfei Ran

    (Graduate School of Engineering Science, Osaka University, Osaka 560-0043, Japan)

  • Yihe Yang

    (Department of Population and Quantitative Health Science, Case Western Reserve University, Cleveland, OH 44106, USA)

Abstract

The estimation of large functional and longitudinal data, which refers to the estimation of mean function, estimation of covariance function, and prediction of individual trajectory, is one of the most challenging problems in the field of high-dimensional statistics. Functional Principal Components Analysis (FPCA) and Functional Linear Mixed Model (FLMM) are two major statistical tools used to address the estimation of large functional and longitudinal data; however, the former suffers from a dramatically increasing computational burden while the latter does not have clear asymptotic properties. In this paper, we propose a computationally effective estimator of large functional and longitudinal data within the framework of FLMM, in which all the parameters can be automatically estimated. Under certain regularity assumptions, we prove that the mean function estimation and individual trajectory prediction reach the minimax lower bounds of all nonparametric estimations. Through numerous simulations and real data analysis, we show that our new estimator outperforms the traditional FPCA in terms of mean function estimation, individual trajectory prediction, variance estimation, covariance function estimation, and computational effectiveness.

Suggested Citation

  • Mengfei Ran & Yihe Yang, 2022. "Optimal Estimation of Large Functional and Longitudinal Data by Using Functional Linear Mixed Model," Mathematics, MDPI, vol. 10(22), pages 1-28, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4322-:d:976311
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/22/4322/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/22/4322/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Hongxiao & Brown, Philip J. & Morris, Jeffrey S., 2011. "Robust, Adaptive Functional Regression in Functional Mixed Model Framework," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1167-1179.
    2. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    3. Antoniadis, Anestis & Sapatinas, Theofanis, 2007. "Estimation and inference in functional mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4793-4813, June.
    4. Minggao Shi & Robert E. Weiss & Jeremy M. G. Taylor, 1996. "An Analysis of Paediatric Cd4 Counts for Acquired Immune Deficiency Syndrome Using Flexible Random Curves," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(2), pages 151-163, June.
    5. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    6. Peter Hall & Hans‐Georg Müller & Fang Yao, 2008. "Modelling sparse generalized longitudinal observations with latent Gaussian processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 703-723, September.
    7. Jeffrey S. Morris & Raymond J. Carroll, 2006. "Wavelet‐based functional mixed models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 179-199, April.
    8. Vonesh E. F. & Wang H. & Nie L. & Majumdar D., 2002. "Conditional Second-Order Generalized Estimating Equations for Generalized Linear and Nonlinear Mixed-Effects Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 271-283, March.
    9. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, September.
    10. John A. Rice & Colin O. Wu, 2001. "Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves," Biometrics, The International Biometric Society, vol. 57(1), pages 253-259, March.
    11. Florentina Bunea & Andrada E. Ivanescu & Marten H. Wegkamp, 2011. "Adaptive inference for the mean of a Gaussian process in functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 531-538, September.
    12. Christian Acal & Ana M. Aguilera & Manuel Escabias, 2020. "New Modeling Approaches Based on Varimax Rotation of Functional Principal Components," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    13. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, September.
    14. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    15. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming Xiong & Ao Yuan & Hong-Bin Fang & Colin O. Wu & Ming T. Tan, 2022. "Estimation and Hypothesis Test for Mean Curve with Functional Data by Reproducing Kernel Hilbert Space Methods, with Applications in Biostatistics," Mathematics, MDPI, vol. 10(23), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gertheiss, Jan & Goldsmith, Jeff & Staicu, Ana-Maria, 2017. "A note on modeling sparse exponential-family functional response curves," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 46-52.
    2. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Shirun Shen & Huiya Zhou & Kejun He & Lan Zhou, 2024. "Principal Component Analysis of Two-dimensional Functional Data with Serial Correlation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 601-620, September.
    4. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    5. Jeff Goldsmith & Vadim Zipunnikov & Jennifer Schrack, 2015. "Generalized multilevel function-on-scalar regression and principal component analysis," Biometrics, The International Biometric Society, vol. 71(2), pages 344-353, June.
    6. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    7. Yukun Zhang & Haocheng Li & Sarah Kozey Keadle & Charles E. Matthews & Raymond J. Carroll, 2019. "A Review of Statistical Analyses on Physical Activity Data Collected from Accelerometers," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 465-476, July.
    8. Massimiliano Mazzanti & Antonio Musolesi, 2020. "Modeling Green Knowledge Production and Environmental Policies with Semiparametric Panel Data Regression models," SEEDS Working Papers 1420, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2020.
    9. Basile, Roberto & Durbán, María & Mínguez, Román & María Montero, Jose & Mur, Jesús, 2014. "Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 229-245.
    10. Daniel Melser, 2017. "Residential Real Estate, Risk, Return and Home Characteristics: Evidence from Sydney 2002-14," ERES eres2017_296, European Real Estate Society (ERES).
    11. Rasheed A. Adeyemi & Temesgen Zewotir & Shaun Ramroop, 2016. "Semiparametric Multinomial Ordinal Model to Analyze Spatial Patterns of Child Birth Weight in Nigeria," IJERPH, MDPI, vol. 13(11), pages 1-22, November.
    12. Gressani, Oswaldo & Lambert, Philippe, 2021. "Laplace approximations for fast Bayesian inference in generalized additive models based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    13. Huaihou Chen & Yuanjia Wang, 2011. "A Penalized Spline Approach to Functional Mixed Effects Model Analysis," Biometrics, The International Biometric Society, vol. 67(3), pages 861-870, September.
    14. Roberto Basile, 2014. "Regional productivity growth in Europe: a Schumpeterian perspective," Gecomplexity Discussion Paper Series 1, Action IS1104 "The EU in the new complex geography of economic systems: models, tools and policy evaluation", revised Nov 2014.
    15. Andrada Ivanescu & Ana-Maria Staicu & Fabian Scheipl & Sonja Greven, 2015. "Penalized function-on-function regression," Computational Statistics, Springer, vol. 30(2), pages 539-568, June.
    16. Haocheng Li & John Staudenmayer & Raymond J. Carroll, 2014. "Hierarchical functional data with mixed continuous and binary measurements," Biometrics, The International Biometric Society, vol. 70(4), pages 802-811, December.
    17. J. Goldsmith & S. Greven & C. Crainiceanu, 2013. "Corrected Confidence Bands for Functional Data Using Principal Components," Biometrics, The International Biometric Society, vol. 69(1), pages 41-51, March.
    18. Reiss Philip T. & Huang Lei, 2012. "Smoothness Selection for Penalized Quantile Regression Splines," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-27, May.
    19. Giampiero Marra & Rosalba Radice & Till Bärnighausen & Simon N. Wood & Mark E. McGovern, 2017. "A Simultaneous Equation Approach to Estimating HIV Prevalence With Nonignorable Missing Responses," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 484-496, April.
    20. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4322-:d:976311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.