IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v14y2012i1d10.1007_s11009-010-9173-z.html
   My bibliography  Save this article

Functional Estimation of the Random Rate of a Cox Process

Author

Listed:
  • Paula R. Bouzas

    (Univ. Granada)

  • Ana M. Aguilera

    (Univ. Granada)

  • Nuria Ruiz-Fuentes

    (Univ. Jaén)

Abstract

The intensity of a doubly stochastic Poisson process (DSPP) is also a stochastic process whose integral is the mean process of the DSPP. From a set of sample paths of the Cox process we propose a numerical method, preserving the monotone character of the mean, to estimate the intensity on the basis of the functional PCA. A validation of the estimation method is presented by means of a simulation as well as a comparison with an alternative estimation method.

Suggested Citation

  • Paula R. Bouzas & Ana M. Aguilera & Nuria Ruiz-Fuentes, 2012. "Functional Estimation of the Random Rate of a Cox Process," Methodology and Computing in Applied Probability, Springer, vol. 14(1), pages 57-69, March.
  • Handle: RePEc:spr:metcap:v:14:y:2012:i:1:d:10.1007_s11009-010-9173-z
    DOI: 10.1007/s11009-010-9173-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-010-9173-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-010-9173-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Locantore & J. Marron & D. Simpson & N. Tripoli & J. Zhang & K. Cohen & Graciela Boente & Ricardo Fraiman & Babette Brumback & Christophe Croux & Jianqing Fan & Alois Kneip & John Marden & Daniel P, 1999. "Robust principal component analysis for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 1-73, June.
    2. Ana M. Aguilera & Ramón Gutiérrez & Francisco A. Ocaña & Mariano J. Valderrama, 1995. "Computational approaches to estimation in the principal component analysis of a stochastic process," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 11(4), pages 279-299, December.
    3. Ocaña, F. A. & Aguilera, A. M. & Valderrama, M. J., 1999. "Functional Principal Components Analysis by Choice of Norm," Journal of Multivariate Analysis, Elsevier, vol. 71(2), pages 262-276, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paula R. Bouzas & Nuria Ruiz-Fuentes & Carmen Montes-Gijón & Juan Eloy Ruiz-Castro, 2021. "Forecasting counting and time statistics of compound Cox processes: a focus on intensity phase type process, deletions and simultaneous events," Statistical Papers, Springer, vol. 62(1), pages 235-265, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Acal & Ana M. Aguilera & Manuel Escabias, 2020. "New Modeling Approaches Based on Varimax Rotation of Functional Principal Components," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    2. Christian Acal & Manuel Escabias & Ana M. Aguilera & Mariano J. Valderrama, 2021. "COVID-19 Data Imputation by Multiple Function-on-Function Principal Component Regression," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
    3. Michael Greenacre & Patrick J. F Groenen & Trevor Hastie & Alfonso Iodice d’Enza & Angelos Markos & Elena Tuzhilina, 2023. "Principal component analysis," Economics Working Papers 1856, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Marc Vidal & Mattia Rosso & Ana M. Aguilera, 2021. "Bi-Smoothed Functional Independent Component Analysis for EEG Artifact Removal," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    5. Jolliffe, Ian, 2022. "A 50-year personal journey through time with principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    7. Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "M-based simultaneous inference for the mean function of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 577-598, June.
    8. B. Barış Alkan, 2016. "Robust Principal Component Analysis Based on Modified Minimum Covariance Determinant in the Presence of Outliers," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 4(2), pages 85-94, September.
    9. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    10. Torokhti, Anatoli & Howlett, Phil, 2003. "Constructing fixed rank optimal estimators with method of best recurrent approximations," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 293-309, August.
    11. C. Croux & C. Dehon & A. Yadine, 2010. "The k-step spatial sign covariance matrix," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 137-150, September.
    12. Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2019. "The spatial sign covariance operator: Asymptotic results and applications," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 115-128.
    13. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2004. "An anova test for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 111-122, August.
    14. Heredia, María Belén & Prieur, Clémentine & Eckert, Nicolas, 2021. "Nonparametric estimation of aggregated Sobol’ indices: Application to a depth averaged snow avalanche model," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    15. Kondylis, Athanassios & Hadi, Ali S., 2006. "Derived components regression using the BACON algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 556-569, November.
    16. Graciela Boente & Matías Salibian-Barrera, 2015. "S -Estimators for Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1100-1111, September.
    17. Seija Sirkiä & Sara Taskinen & Hannu Oja & David Tyler, 2009. "Tests and estimates of shape based on spatial signs and ranks," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 155-176.
    18. Erkuş, Ekin Can & Purutçuoğlu, Vilda, 2021. "Outlier detection and quasi-periodicity optimization algorithm: Frequency domain based outlier detection (FOD)," European Journal of Operational Research, Elsevier, vol. 291(2), pages 560-574.
    19. Debruyne, Michiel & Hubert, Mia & Van Horebeek, Johan, 2010. "Detecting influential observations in Kernel PCA," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3007-3019, December.
    20. Todorov, Valentin & Filzmoser, Peter, 2009. "An Object-Oriented Framework for Robust Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i03).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:14:y:2012:i:1:d:10.1007_s11009-010-9173-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.