IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v8y1999i1p1-73.html
   My bibliography  Save this article

Robust principal component analysis for functional data

Author

Listed:
  • N. Locantore
  • J. Marron
  • D. Simpson
  • N. Tripoli
  • J. Zhang
  • K. Cohen
  • Graciela Boente
  • Ricardo Fraiman
  • Babette Brumback
  • Christophe Croux
  • Jianqing Fan
  • Alois Kneip
  • John Marden
  • Daniel Peña
  • Javier Prieto
  • Jim Ramsay
  • Mariano Valderrama
  • Ana Aguilera
  • N. Locantore
  • J. Marron
  • D. Simpson
  • N. Tripoli
  • J. Zhang
  • K. Cohen

Abstract

No abstract is available for this item.

Suggested Citation

  • N. Locantore & J. Marron & D. Simpson & N. Tripoli & J. Zhang & K. Cohen & Graciela Boente & Ricardo Fraiman & Babette Brumback & Christophe Croux & Jianqing Fan & Alois Kneip & John Marden & Daniel P, 1999. "Robust principal component analysis for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 1-73, June.
  • Handle: RePEc:spr:testjl:v:8:y:1999:i:1:p:1-73
    DOI: 10.1007/BF02595862
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02595862
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02595862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prieto, Francisco J., 1997. "Robust covariance matrix estimation and multivariate outlier detection," DES - Working Papers. Statistics and Econometrics. WS 10497, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    3. Philippe Besse & J. Ramsay, 1986. "Principal components analysis of sampled functions," Psychometrika, Springer;The Psychometric Society, vol. 51(2), pages 285-311, June.
    4. Marden, John I., 1999. "Some robust estimates of principal components," Statistics & Probability Letters, Elsevier, vol. 43(4), pages 349-359, July.
    5. Croux, C. & Haesbroeck, G., 1999. "Principal Component Analysis Based on Robust Estimators of the Covariance or Correlation Matrix: Influence Functions and Efficiencies," Liege - Groupe d'Etude des Mathematiques du Management et de l'Economie 9908, UNIVERSITE DE LIEGE, Faculte d'economie, de gestion et de sciences sociales, Groupe d'Etude des Mathematiques du Management et de l'Economie.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    2. Christian Genest & Johanna G. Nešlehová, 2014. "A Conversation with James O. Ramsay," International Statistical Review, International Statistical Institute, vol. 82(2), pages 161-183, August.
    3. Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2010. "Inference under functional proportional and common principal component models," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 464-475, February.
    4. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
    5. Lakraj, Gamage Pemantha & Ruymgaart, Frits, 2017. "Some asymptotic theory for Silverman’s smoothed functional principal components in an abstract Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 122-132.
    6. Christoph Hellmayr & Alan E. Gelfand, 2021. "A Partition Dirichlet Process Model for Functional Data Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 30-65, May.
    7. Panaretos, Victor M. & Tavakoli, Shahin, 2013. "Cramér–Karhunen–Loève representation and harmonic principal component analysis of functional time series," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2779-2807.
    8. Boente, Graciela & Fraiman, Ricardo, 2000. "Kernel-based functional principal components," Statistics & Probability Letters, Elsevier, vol. 48(4), pages 335-345, July.
    9. Hlubinka, Daniel & Prchal, Lubos, 2007. "Changes in atmospheric radiation from the statistical point of view," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4926-4941, June.
    10. Christian Acal & Ana M. Aguilera & Manuel Escabias, 2020. "New Modeling Approaches Based on Varimax Rotation of Functional Principal Components," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    11. Hans-Georg Müller & Wenjing Yang, 2010. "Dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 1-29, May.
    12. van Delft, Anne & Eichler, Michael, 2017. "Locally Stationary Functional Time Series," LIDAM Discussion Papers ISBA 2017023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. repec:eca:wpaper:2013/131191 is not listed on IDEAS
    14. repec:cte:wsrepe:ws1506 is not listed on IDEAS
    15. María Edo & Walter Sosa Escudero & Marcela Svarc, 2021. "A multidimensional approach to measuring the middle class," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 19(1), pages 139-162, March.
    16. Jarry, Gabriel & Delahaye, Daniel & Nicol, Florence & Feron, Eric, 2020. "Aircraft atypical approach detection using functional principal component analysis," Journal of Air Transport Management, Elsevier, vol. 84(C).
    17. repec:hum:wpaper:sfb649dp2006-010 is not listed on IDEAS
    18. van Delft, Anne, 2020. "A note on quadratic forms of stationary functional time series under mild conditions," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4206-4251.
    19. Fang Yao & Hans-Georg Müller & Andrew J. Clifford & Steven R. Dueker & Jennifer Follett & Yumei Lin & Bruce A. Buchholz & John S. Vogel, 2003. "Shrinkage Estimation for Functional Principal Component Scores with Application to the Population Kinetics of Plasma Folate," Biometrics, The International Biometric Society, vol. 59(3), pages 676-685, September.
    20. Bali, Juan Lucas & Boente, Graciela, 2015. "Influence function of projection-pursuit principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 173-199.
    21. Qi, Xin & Zhao, Hongyu, 2011. "Some theoretical properties of Silverman's method for Smoothed functional principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 741-767, April.
    22. Segovia-Gonzalez, M.M. & Guerrero, F.M. & Herranz, P., 2009. "Explaining functional principal component analysis to actuarial science with an example on vehicle insurance," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 278-285, October.
    23. Ci-Ren Jiang & John A. D. Aston & Jane-Ling Wang, 2016. "A Functional Approach to Deconvolve Dynamic Neuroimaging Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:8:y:1999:i:1:p:1-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.