IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2008i1p151-163.html
   My bibliography  Save this article

Discussion of different logistic models with functional data. Application to Systemic Lupus Erythematosus

Author

Listed:
  • Aguilera, Ana M.
  • Escabias, Manuel
  • Valderrama, Mariano J.

Abstract

The relationship between time evolution of stress and flares in Systemic Lupus Erythematosus patients has recently been studied. Daily stress data can be considered as observations of a single variable for a subject, carried out repeatedly at different time points (functional data). In this study, we propose a functional logistic regression model with the aim of predicting the probability of lupus flare (binary response variable) from a functional predictor variable (stress level). This method differs from the classical approach, in which longitudinal data are considered as observations of different correlated variables. The estimation of this functional model may be inaccurate due to multicollinearity, and so a principal component based solution is proposed. In addition, a new interpretation is made of the parameter function of the model, which enables the relationship between the response and the predictor variables to be evaluated. Finally, the results provided by different logit approaches (functional and longitudinal) are compared, using a sample of Lupus patients.

Suggested Citation

  • Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2008. "Discussion of different logistic models with functional data. Application to Systemic Lupus Erythematosus," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 151-163, September.
  • Handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:151-163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00333-2
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouzas, P.R. & Valderrama, M.J. & Aguilera, A.M. & Ruiz-Fuentes, N., 2006. "Modelling the mean of a doubly stochastic Poisson process by functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2655-2667, June.
    2. King, Gary & Zeng, Langche, 2001. "Logistic Regression in Rare Events Data," Political Analysis, Cambridge University Press, vol. 9(2), pages 137-163, January.
    3. Ana Aguilera & Francisco Ocaña & Mariano Valderrama, 1999. "Forecasting with unequally spaced data by a functional principal component approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(1), pages 233-253, June.
    4. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    5. Heij, Christiaan & Groenen, Patrick J.F. & van Dijk, Dick, 2007. "Forecast comparison of principal component regression and principal covariate regression," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3612-3625, April.
    6. Escabias, M. & Aguilera, A.M. & Valderrama, M.J., 2007. "Functional PLS logit regression model," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4891-4902, June.
    7. Mariano Valderrama, 2007. "An overview to modelling functional data," Computational Statistics, Springer, vol. 22(3), pages 331-334, September.
    8. Preda, C. & Saporta, G., 2005. "Clusterwise PLS regression on a stochastic process," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 99-108, April.
    9. Ferraty, F. & Vieu, P., 2003. "Curves discrimination: a nonparametric functional approach," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 161-173, October.
    10. Ocaña, F. A. & Aguilera, A. M. & Valderrama, M. J., 1999. "Functional Principal Components Analysis by Choice of Norm," Journal of Multivariate Analysis, Elsevier, vol. 71(2), pages 262-276, November.
    11. Francisco Ocaña & Ana Aguilera & Manuel Escabias, 2007. "Computational considerations in functional principal component analysis," Computational Statistics, Springer, vol. 22(3), pages 449-465, September.
    12. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    13. Preda, C. & Saporta, G., 2005. "PLS regression on a stochastic process," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 149-158, January.
    14. Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2006. "Using principal components for estimating logistic regression with high-dimensional multicollinear data," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 1905-1924, April.
    15. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    16. Gareth M. James, 2002. "Generalized linear models with functional predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 411-432, August.
    17. Hans‐Georg Müller, 2005. "Functional Modelling and Classification of Longitudinal Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 223-240, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han Lin Shang, 2014. "Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(3), pages 599-615, September.
    2. Kazakevičiūtė, Agne & Olivo, Malini, 2017. "Point separation in logistic regression on Hilbert space-valued variables," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 84-88.
    3. M. Aguilera-Morillo & Ana Aguilera & Manuel Escabias & Mariano Valderrama, 2013. "Penalized spline approaches for functional logit regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 251-277, June.
    4. Manuel Escabias & Ana Aguilera & M. Aguilera-Morillo, 2014. "Functional PCA and Base-Line Logit Models," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 296-324, October.
    5. Boj, Eva & Delicado, Pedro & Fortiana, Josep, 2010. "Distance-based local linear regression for functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 429-437, February.
    6. Ana M. Aguilera & Manuel Escabias & Francisco A. Ocaña & Mariano J. Valderrama, 2015. "Functional Wavelet-Based Modelling of Dependence Between Lupus and Stress," Methodology and Computing in Applied Probability, Springer, vol. 17(4), pages 1015-1028, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2008. "Forecasting binary longitudinal data by a functional PC-ARIMA model," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3187-3197, February.
    2. van der Linde, Angelika, 2008. "Variational Bayesian functional PCA," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 517-533, December.
    3. Escabias, M. & Aguilera, A.M. & Valderrama, M.J., 2007. "Functional PLS logit regression model," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4891-4902, June.
    4. Christian Acal & Manuel Escabias & Ana M. Aguilera & Mariano J. Valderrama, 2021. "COVID-19 Data Imputation by Multiple Function-on-Function Principal Component Regression," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
    5. Berrendero, J.R. & Justel, A. & Svarc, M., 2011. "Principal components for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2619-2634, September.
    6. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    7. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    8. Ana M. Aguilera, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 23-26, March.
    9. Ana Aguilera, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 23-26, March.
    10. Ufuk Beyaztas & Han Lin Shang, 2021. "A partial least squares approach for function-on-function interaction regression," Computational Statistics, Springer, vol. 36(2), pages 911-939, June.
    11. Fernández-Alcalá, R.M. & Navarro-Moreno, J. & Ruiz-Molina, J.C., 2009. "Statistical inference for doubly stochastic multichannel Poisson processes: A PCA approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4322-4331, October.
    12. Zhou, Jie, 2011. "Maximum likelihood ratio test for the stability of sequence of Gaussian random processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2114-2127, June.
    13. M. Aguilera-Morillo & Ana Aguilera & Manuel Escabias & Mariano Valderrama, 2013. "Penalized spline approaches for functional logit regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 251-277, June.
    14. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    15. Tingting Huang & Gilbert Saporta & Huiwen Wang & Shanshan Wang, 2021. "A robust spatial autoregressive scalar-on-function regression with t-distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 57-81, March.
    16. Manuel Febrero-Bande & Pedro Galeano & Wenceslao González-Manteiga, 2017. "Functional Principal Component Regression and Functional Partial Least-squares Regression: An Overview and a Comparative Study," International Statistical Review, International Statistical Institute, vol. 85(1), pages 61-83, April.
    17. Manuel Escabias & Ana Aguilera & M. Aguilera-Morillo, 2014. "Functional PCA and Base-Line Logit Models," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 296-324, October.
    18. Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    19. Germán Aneiros & Philippe Vieu, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 27-32, March.
    20. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:151-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.