IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i7p1738-d1116394.html
   My bibliography  Save this article

Elucidating the Effects of Ionizing Radiation on Immune Cell Populations: A Mathematical Modeling Approach with Special Emphasis on Fractional Derivatives

Author

Listed:
  • Dalal Yahya Alzahrani

    (Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
    Department of Mathematics, Faculty of Science, Al Baha University, Al Bahah 65528, Saudi Arabia)

  • Fuaada Mohd Siam

    (Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia)

  • Farah A. Abdullah

    (School of Mathematical Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia)

Abstract

Despite recent advances in the mathematical modeling of biological processes and real-world situations raised in the day-to-day life phase, some phenomena such as immune cell populations remain poorly understood. The mathematical modeling of complex phenomena such as immune cell populations using nonlinear differential equations seems to be a quite promising and appropriate tool to model such complex and nonlinear phenomena. Fractional differential equations have recently gained a significant deal of attention and demonstrated their relevance in modeling real phenomena rather than their counterpart, classical (integer) derivative differential equations. We report in this paper a mathematical approach susceptible to answering some relevant questions regarding the side effects of ionizing radiation (IR) on DNA with a particular focus on double-strand breaks (DSBs), leading to the destruction of the cell population. A theoretical elucidation of the population memory was carried out within the framework of fractional differential equations (FODEs). Using FODEs, the mathematical approach presented herein ensures connections between fractional calculus and the nonlocal feature of the fractional order of immune cell populations by taking into account the memory trace and genetic qualities that are capable of integrating all previous actions and considering the system’s long-term history. An illustration of both fractional modeling, which provides an excellent framework for the description of memory and hereditary properties of immune cell populations, is elucidated. The mathematics presented in this research hold promise for modeling real-life phenomena and paves the way for obtaining accurate model parameters resulting from the mathematical modeling. Finally, the numerical simulations are conducted for the analytical approach presented herein to elucidate the effect of various parameters that govern the influence of ionizing irradiation on DNA in immune cell populations as well as the evolution of cell population dynamics, and the results are presented using plots and contrasted with previous theoretical findings.

Suggested Citation

  • Dalal Yahya Alzahrani & Fuaada Mohd Siam & Farah A. Abdullah, 2023. "Elucidating the Effects of Ionizing Radiation on Immune Cell Populations: A Mathematical Modeling Approach with Special Emphasis on Fractional Derivatives," Mathematics, MDPI, vol. 11(7), pages 1-21, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1738-:d:1116394
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/7/1738/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/7/1738/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelaziz, Mahmoud A.M. & Ismail, Ahmad Izani & Abdullah, Farah A. & Mohd, Mohd Hafiz, 2020. "Codimension one and two bifurcations of a discrete-time fractional-order SEIR measles epidemic model with constant vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Qureshi, Sania, 2020. "Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Oana Brandibur & Roberto Garrappa & Eva Kaslik, 2021. "Stability of Systems of Fractional-Order Differential Equations with Caputo Derivatives," Mathematics, MDPI, vol. 9(8), pages 1-20, April.
    4. Al-khedhairi, A. & Elsadany, A.A. & Elsonbaty, A., 2019. "Modelling immune systems based on Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 25-39.
    5. Abdulrahman Al-Khedhairi & Abdelalim A. Elsadany & Amr Elsonbaty & Ali Ahmadian, 2022. "On the Dynamics of a Discrete Fractional-Order Cournot–Bertrand Competition Duopoly Game," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-13, February.
    6. Siam, F.M. & Grinfeld, M. & Bahar, A. & Rahman, H.A. & Ahmad, H. & Johar, F., 2018. "A mechanistic model of high dose irradiation damage," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 151(C), pages 156-168.
    7. Ahmed, Najma & Shah, Nehad Ali & Taherifar, Somaye & Zaman, F.D., 2021. "Memory effects and of the killing rate on the tumor cells concentration for a one-dimensional cancer model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    8. Khajanchi, Subhas & Nieto, Juan J., 2019. "Mathematical modeling of tumor-immune competitive system, considering the role of time delay," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 180-205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalil S. Al-Basyouni & Elsayed M. Elsayed, 2023. "On Some Solvable Systems of Some Rational Difference Equations of Third Order," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
    2. Zhao, Zhong & Pang, Liuyong & Li, Qiuying, 2021. "Analysis of a hybrid impulsive tumor-immune model with immunotherapy and chemotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Kamal, F.M. & Elsonbaty, A. & Elsaid, A., 2021. "A novel fractional nonautonomous chaotic circuit model and its application to image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Asamoah, Joshua Kiddy K. & Fatmawati,, 2023. "A fractional mathematical model of heartwater transmission dynamics considering nymph and adult amblyomma ticks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Mohamed Jleli & Bessem Samet & Calogero Vetro, 2021. "Nonexistence Results for Higher Order Fractional Differential Inequalities with Nonlinearities Involving Caputo Fractional Derivative," Mathematics, MDPI, vol. 9(16), pages 1-11, August.
    6. Khajanchi, Subhas, 2021. "The impact of immunotherapy on a glioma immune interaction model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Manuel De la Sen & Asier Ibeas & Santiago Alonso-Quesada, 2022. "On the Supervision of a Saturated SIR Epidemic Model with Four Joint Control Actions for a Drastic Reduction in the Infection and the Susceptibility through Time," IJERPH, MDPI, vol. 19(3), pages 1-26, January.
    8. Yousefpour, Amin & Jahanshahi, Hadi & Bekiros, Stelios, 2020. "Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    9. Deng, Shuning & Ji, Jinchen & Wen, Guilin & Xu, Huidong, 2021. "A comparative study of the dynamics of a three-disk dynamo system with and without time delay," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    10. Sardar, Mrinmoy & Biswas, Santosh & Khajanchi, Subhas, 2021. "The impact of distributed time delay in a tumor-immune interaction system," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    11. Alfifi, H.Y., 2022. "Stability analysis for Schnakenberg reaction-diffusion model with gene expression time delay," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    12. Skwara, Urszula & Mozyrska, Dorota & Aguiar, Maira & Stollenwerk, Nico, 2024. "Dynamics of vector-borne diseases through the lens of systems incorporating fractional-order derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    13. Qureshi, Sania & Jan, Rashid, 2021. "Modeling of measles epidemic with optimized fractional order under Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    14. Zhang, Zizhen & Rahman, Ghaus ur & Gómez-Aguilar, J.F. & Torres-Jiménez, J., 2022. "Dynamical aspects of a delayed epidemic model with subdivision of susceptible population and control strategies," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    15. Muñoz-Vázquez, Aldo Jonathan & Sánchez-Torres, Juan Diego & Defoort, Michael & Boulaaras, Salah, 2021. "Predefined-time convergence in fractional-order systems," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    16. Han, Haoming & Zhang, Jing & Liu, Yan, 2023. "Stability analysis of hybrid high-order nonlinear multiple time-delayed coupled systems via aperiodically intermittent control," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    17. Hashem Althagafi & Ahmed Ghezal, 2024. "Analytical Study of Nonlinear Systems of Higher-Order Difference Equations: Solutions, Stability, and Numerical Simulations," Mathematics, MDPI, vol. 12(8), pages 1-20, April.
    18. Ebraheem Alzahrani & M. M. El-Dessoky & Muhammad Altaf Khan, 2023. "Mathematical Model to Understand the Dynamics of Cancer, Prevention Diagnosis and Therapy," Mathematics, MDPI, vol. 11(9), pages 1-17, April.
    19. Zhang, Tao & Lu, Zhong-rong & Liu, Ji-ke & Chen, Yan-mao & Liu, Guang, 2023. "Parameter estimation of linear fractional-order system from laplace domain data," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    20. Li, Jianquan & Xie, Xin & Chen, Yuming & Zhang, Dian, 2021. "Complex dynamics of a tumor-immune system with antigenicity," Applied Mathematics and Computation, Elsevier, vol. 400(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1738-:d:1116394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.