IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920305014.html
   My bibliography  Save this article

Codimension one and two bifurcations of a discrete-time fractional-order SEIR measles epidemic model with constant vaccination

Author

Listed:
  • Abdelaziz, Mahmoud A.M.
  • Ismail, Ahmad Izani
  • Abdullah, Farah A.
  • Mohd, Mohd Hafiz

Abstract

In this paper, a discrete-time SEIR measles epidemic model with fractional-order and constant vaccination is investigated. The basic reproduction number with an algebraic criterion are used to study the local asymptotic stability of the equilibrium points. Two types of codimension one bifurcation namely, flip and Neimark-Sacker (N-S) bifurcations and their intersection codimension two flip-N-S bifurcation, are discussed. The necessary and sufficient conditions for detecting these types of bifurcation are derived using algebraic criterion methods. The criterions employed are based on the coefficients of characteristic equations rather than the properties of eigenvalues of Jacobian matrix. The output is a semi-algebraic system composed of a set of equations, inequalities and inequations. These criterions represent appropriate conditions for codim-1 and codim-2 bifurcations of high dimensional maps.

Suggested Citation

  • Abdelaziz, Mahmoud A.M. & Ismail, Ahmad Izani & Abdullah, Farah A. & Mohd, Mohd Hafiz, 2020. "Codimension one and two bifurcations of a discrete-time fractional-order SEIR measles epidemic model with constant vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305014
    DOI: 10.1016/j.chaos.2020.110104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920305014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pang, Liuyong & Ruan, Shigui & Liu, Sanhong & Zhao, Zhong & Zhang, Xinan, 2015. "Transmission dynamics and optimal control of measles epidemics," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 131-147.
    2. R. Khoshsiar Ghaziani & W. Govaerts & C. Sonck, 2011. "Codimension-Two Bifurcations of Fixed Points in a Class of Discrete Prey-Predator Systems," Discrete Dynamics in Nature and Society, Hindawi, vol. 2011, pages 1-27, June.
    3. Niu, Wei & Shi, Jian & Mou, Chenqi, 2016. "Analysis of codimension 2 bifurcations for high-dimensional discrete systems using symbolic computation methods," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 934-947.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dalal Yahya Alzahrani & Fuaada Mohd Siam & Farah A. Abdullah, 2023. "Elucidating the Effects of Ionizing Radiation on Immune Cell Populations: A Mathematical Modeling Approach with Special Emphasis on Fractional Derivatives," Mathematics, MDPI, vol. 11(7), pages 1-21, April.
    2. Zhang, Zizhen & Rahman, Ghaus ur & Gómez-Aguilar, J.F. & Torres-Jiménez, J., 2022. "Dynamical aspects of a delayed epidemic model with subdivision of susceptible population and control strategies," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    2. Fu, Xinjie & Wang, JinRong, 2022. "Dynamic stability and optimal control of SISqIqRS epidemic network," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    3. Yujiang Liu & Shujing Gao & Di Chen & Bing Liu, 2024. "Modeling the Transmission Dynamics and Optimal Control Strategy for Huanglongbing," Mathematics, MDPI, vol. 12(17), pages 1-23, August.
    4. Ali Khaleel Dhaiban & Baydaa Khalaf Jabbar, 2021. "An optimal control model of COVID-19 pandemic: a comparative study of five countries," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 790-809, December.
    5. Berhe, Hailay Weldegiorgis & Makinde, Oluwole Daniel & Theuri, David Mwangi, 2019. "Co-dynamics of measles and dysentery diarrhea diseases with optimal control and cost-effectiveness analysis," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 903-921.
    6. Mingdong Lyu & Kuofu Liu & Randolph W. Hall, 2024. "Spatial Interaction Analysis of Infectious Disease Import and Export between Regions," IJERPH, MDPI, vol. 21(5), pages 1-19, May.
    7. Pang, Liuyong & Zhao, Zhong & Song, Xinyu, 2016. "Cost-effectiveness analysis of optimal strategy for tumor treatment," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 293-301.
    8. Jose Diamantino Hernández Guillén & Ángel Martín del Rey & Roberto Casado Vara, 2020. "On the Optimal Control of a Malware Propagation Model," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
    9. Qureshi, Sania & Jan, Rashid, 2021. "Modeling of measles epidemic with optimized fractional order under Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    10. Li, Can & Guo, Zun-Guang & Zhang, Zhi-Yu, 2017. "Transmission dynamics of a brucellosis model: Basic reproduction number and global analysis," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 161-172.
    11. Juliet Nakakawa & Joseph Y. T. Mugisha & Michael W. Shaw & William Tinzaara & Eldad Karamura, 2017. "Banana Xanthomonas Wilt Infection: The Role of Debudding and Roguing as Control Options within a Mixed Cultivar Plantation," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2017, pages 1-13, December.
    12. Nudee, K. & Chinviriyasit, S. & Chinviriyasit, W., 2019. "The effect of backward bifurcation in controlling measles transmission by vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 400-412.
    13. Farman, Muhammad & Xu, Changjin & Shehzad, Aamir & Akgul, Ali, 2024. "Modeling and dynamics of measles via fractional differential operator of singular and non-singular kernels," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 461-488.
    14. Madhu, Kalyanasundaram & Al-arydah, Mo’tassem, 2021. "Optimal vaccine for human papillomavirus and age-difference between partners," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 325-346.
    15. Xu, Rui & Wang, Zhili & Zhang, Fengqin, 2015. "Global stability and Hopf bifurcations of an SEIR epidemiological model with logistic growth and time delay," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 332-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.