IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i2p220-d1564449.html
   My bibliography  Save this article

On the Fractional Dynamics of Kinks in Sine-Gordon Models

Author

Listed:
  • Tassos Bountis

    (Department of Mathematics, University of Patras, 26500 Patras, Greece)

  • Julia Cantisán

    (Grupo de Física No Lineal (FQM-280), Departamento de Ciencias Integradas y Centro de Estudios Avanzados en Física, Matemáticas y Computación, Universidad de Huelva, 21071 Huelva, Spain)

  • Jesús Cuevas-Maraver

    (Grupo de Física No Lineal (FQM-280), Departamento de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, 41011 Sevilla, Spain
    Edificio Celestino Mutis, Instituto de Matemáticas de la Universidad de Sevilla (IMUS), Avenida de la Reina Mercedes s/n, 41012 Sevilla, Spain)

  • Jorge Eduardo Macías-Díaz

    (Department of Mathematics and Didactics of Mathematics, School of Digital Technologies, Tallinn University, Narva Rd. 25, 10120 Tallinn, Estonia
    Departamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico)

  • Panayotis G. Kevrekidis

    (Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003-4515, USA)

Abstract

In the present work, we explored the dynamics of single kinks, kink–anti-kink pairs and bound states in the prototypical fractional Klein–Gordon example of the sine-Gordon equation. In particular, we modified the order β of the temporal derivative to that of a Caputo fractional type and found that, for 1 < β < 2 , this imposes a dissipative dynamical behavior on the coherent structures. We also examined the variation of a fractional Riesz order α on the spatial derivative. Here, depending on whether this order was below or above the harmonic value α = 2 , we found, respectively, monotonically attracting kinks, or non-monotonic and potentially attracting or repelling kinks, with a saddle equilibrium separating the two. Finally, we also explored the interplay of the two derivatives, when both Caputo temporal and Riesz spatial derivatives are involved.

Suggested Citation

  • Tassos Bountis & Julia Cantisán & Jesús Cuevas-Maraver & Jorge Eduardo Macías-Díaz & Panayotis G. Kevrekidis, 2025. "On the Fractional Dynamics of Kinks in Sine-Gordon Models," Mathematics, MDPI, vol. 13(2), pages 1-16, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:220-:d:1564449
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/2/220/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/2/220/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hao Ming & JinRong Wang & Michal Fečkan, 2019. "The Application of Fractional Calculus in Chinese Economic Growth Models," Mathematics, MDPI, vol. 7(8), pages 1-6, July.
    2. Qureshi, Sania, 2020. "Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ertuğrul Karaçuha & Vasil Tabatadze & Kamil Karaçuha & Nisa Özge Önal & Esra Ergün, 2020. "Deep Assessment Methodology Using Fractional Calculus on Mathematical Modeling and Prediction of Gross Domestic Product per Capita of Countries," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
    2. Xu Wang & JinRong Wang & Michal Fečkan, 2020. "BP Neural Network Calculus in Economic Growth Modelling of the Group of Seven," Mathematics, MDPI, vol. 8(1), pages 1-11, January.
    3. Asamoah, Joshua Kiddy K. & Fatmawati,, 2023. "A fractional mathematical model of heartwater transmission dynamics considering nymph and adult amblyomma ticks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Mohamed Jleli & Bessem Samet & Calogero Vetro, 2021. "Nonexistence Results for Higher Order Fractional Differential Inequalities with Nonlinearities Involving Caputo Fractional Derivative," Mathematics, MDPI, vol. 9(16), pages 1-11, August.
    5. Manuel De la Sen & Asier Ibeas & Santiago Alonso-Quesada, 2022. "On the Supervision of a Saturated SIR Epidemic Model with Four Joint Control Actions for a Drastic Reduction in the Infection and the Susceptibility through Time," IJERPH, MDPI, vol. 19(3), pages 1-26, January.
    6. Alfifi, H.Y., 2022. "Stability analysis for Schnakenberg reaction-diffusion model with gene expression time delay," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    7. Qureshi, Sania & Jan, Rashid, 2021. "Modeling of measles epidemic with optimized fractional order under Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    8. Chukwu, C.W. & Fatmawati, & Utoyo, M.I. & Setiawan, A. & Akanni, J.O., 2024. "Fractional model of HIV transmission on workplace productivity using real data from Indonesia," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 1089-1103.
    9. Muhamad Deni Johansyah & Endang Rusyaman & Bob Foster & Khoirunnisa Rohadatul Aisy Muslihin & Asep K. Supriatna, 2024. "Combining Differential Equations with Stochastic for Economic Growth Models in Indonesia: A Comprehensive Literature Review," Mathematics, MDPI, vol. 12(20), pages 1-15, October.
    10. Dalal Yahya Alzahrani & Fuaada Mohd Siam & Farah A. Abdullah, 2023. "Elucidating the Effects of Ionizing Radiation on Immune Cell Populations: A Mathematical Modeling Approach with Special Emphasis on Fractional Derivatives," Mathematics, MDPI, vol. 11(7), pages 1-21, April.
    11. Zhang, Tao & Lu, Zhong-rong & Liu, Ji-ke & Chen, Yan-mao & Liu, Guang, 2023. "Parameter estimation of linear fractional-order system from laplace domain data," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    12. Arshad, Sadia & Siddique, Imran & Nawaz, Fariha & Shaheen, Aqila & Khurshid, Hina, 2023. "Dynamics of a fractional order mathematical model for COVID-19 epidemic transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    13. Kaviya, R. & Priyanka, M. & Muthukumar, P., 2022. "Mean-square exponential stability of impulsive conformable fractional stochastic differential system with application on epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:220-:d:1564449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.