IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v179y2024ics0960077923012997.html
   My bibliography  Save this article

A mathematical model for tumor-immune competitive system with multiple time delays

Author

Listed:
  • Sardar, Mrinmoy
  • Khajanchi, Subhas
  • Biswas, Santosh
  • Ghosh, Sumana

Abstract

A mathematical model is proposed to study the complicated dynamics of tumor-immune interactions with three discrete time delays. The proposed model consists of nine coupled ordinary differential equations (ODEs) whose components are tumor cells, tumor-specific CD8+T cells, dendritic cells, macrophages, regulatory T-cells (Tregs), interleukin-10 (IL-10), IL-12, transforming growth factor-β (TGF-β) and interferon-γ (IFN-γ). By utilizing the quasi-steady-state approximation for cytokine concentrations, we obtain a system of four coupled ODEs. We introduce three discrete time delays into our deterministic system to better understand the tumor-immune dynamics. Basic properties of the system, including existence, uniqueness, positivity, boundedness, and uniform persistence are discussed. Stability analysis of both the delayed and non-delayed system has been performed and the conditions for stability and direction of Hopf bifurcation have been determined. Furthermore, we assess the length of time delay required to maintain the stability of period-1 limit cycle. Parameter estimation techniques are discussed and numerical simulations are provided to support our theoretical analysis. Notably, we observe that time delays do not significantly influence the system behavior for the existing set of parameters value.

Suggested Citation

  • Sardar, Mrinmoy & Khajanchi, Subhas & Biswas, Santosh & Ghosh, Sumana, 2024. "A mathematical model for tumor-immune competitive system with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:chsofr:v:179:y:2024:i:c:s0960077923012997
    DOI: 10.1016/j.chaos.2023.114397
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923012997
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khajanchi, Subhas & Nieto, Juan J., 2019. "Mathematical modeling of tumor-immune competitive system, considering the role of time delay," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 180-205.
    2. Khajanchi, Subhas, 2015. "Bifurcation analysis of a delayed mathematical model for tumor growth," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 264-276.
    3. Sardar, Mrinmoy & Biswas, Santosh & Khajanchi, Subhas, 2021. "The impact of distributed time delay in a tumor-immune interaction system," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Al-Hussein, Abdul-Basset A. & Rahma, Fadihl & Jafari, Sajad, 2020. "Hopf bifurcation and chaos in time-delay model of glucose-insulin regulatory system," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khajanchi, Subhas, 2021. "The impact of immunotherapy on a glioma immune interaction model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Han, Haoming & Zhang, Jing & Liu, Yan, 2023. "Stability analysis of hybrid high-order nonlinear multiple time-delayed coupled systems via aperiodically intermittent control," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Sardar, Mrinmoy & Biswas, Santosh & Khajanchi, Subhas, 2021. "The impact of distributed time delay in a tumor-immune interaction system," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Liu, Xiangdong & Li, Qingze & Pan, Jianxin, 2018. "A deterministic and stochastic model for the system dynamics of tumor–immune responses to chemotherapy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 162-176.
    5. Khajanchi, Subhas & Ghosh, Dibakar, 2015. "The combined effects of optimal control in cancer remission," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 375-388.
    6. Zhao, Zhong & Pang, Liuyong & Li, Qiuying, 2021. "Analysis of a hybrid impulsive tumor-immune model with immunotherapy and chemotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    7. Dzyubak, Larysa & Dzyubak, Oleksandr & Awrejcewicz, Jan, 2023. "Nonlinear multiscale diffusion cancer invasion model with memory of states," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Bera, Sovan & Khajanchi, Subhas & Roy, Tapan Kumar, 2022. "Dynamics of an HTLV-I infection model with delayed CTLs immune response," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    9. Yousefpour, Amin & Jahanshahi, Hadi & Bekiros, Stelios, 2020. "Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    10. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    11. Deng, Shuning & Ji, Jinchen & Wen, Guilin & Xu, Huidong, 2021. "A comparative study of the dynamics of a three-disk dynamo system with and without time delay," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    12. Khajanchi, Subhas & Nieto, Juan J., 2019. "Mathematical modeling of tumor-immune competitive system, considering the role of time delay," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 180-205.
    13. Khajanchi, Subhas, 2018. "Modeling the dynamics of glioma-immune surveillance," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 108-118.
    14. Ebraheem Alzahrani & M. M. El-Dessoky & Muhammad Altaf Khan, 2023. "Mathematical Model to Understand the Dynamics of Cancer, Prevention Diagnosis and Therapy," Mathematics, MDPI, vol. 11(9), pages 1-17, April.
    15. Tang, Xiaosong, 2022. "Periodic solutions and spatial patterns induced by mixed delays in a diffusive spruce budworm model with Holling II predation function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 420-429.
    16. Dalal Yahya Alzahrani & Fuaada Mohd Siam & Farah A. Abdullah, 2023. "Elucidating the Effects of Ionizing Radiation on Immune Cell Populations: A Mathematical Modeling Approach with Special Emphasis on Fractional Derivatives," Mathematics, MDPI, vol. 11(7), pages 1-21, April.
    17. Ying, Jiajie & Liang, Yan & Wang, Junlan & Dong, Yujiao & Wang, Guangyi & Gu, Meiyuan, 2021. "A tristable locally-active memristor and its complex dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    18. Khajanchi, Subhas & Bera, Sovan & Roy, Tapan Kumar, 2021. "Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 354-378.
    19. Li, Qian & Xiao, Yanni, 2019. "Bifurcation analyses and hormetic effects of a discrete-time tumor model," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    20. Liu, Yujuan & Lu, Qiong, 2020. "Hopf bifurcations in 3D competitive system with mixing exponential and rational growth rates," Applied Mathematics and Computation, Elsevier, vol. 378(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:179:y:2024:i:c:s0960077923012997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.