The impact of immunotherapy on a glioma immune interaction model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2021.111346
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- L. Berezansky & S. Bunimovich-Mendrazitsky & B. Shklyar, 2015. "Stability and Controllability Issues in Mathematical Modeling of the Intensive Treatment of Leukemia," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 326-341, October.
- Khajanchi, Subhas & Nieto, Juan J., 2019. "Mathematical modeling of tumor-immune competitive system, considering the role of time delay," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 180-205.
- Khajanchi, Subhas, 2015. "Bifurcation analysis of a delayed mathematical model for tumor growth," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 264-276.
- Sardar, Mrinmoy & Biswas, Santosh & Khajanchi, Subhas, 2021. "The impact of distributed time delay in a tumor-immune interaction system," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Khajanchi, Subhas, 2018. "Modeling the dynamics of glioma-immune surveillance," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 108-118.
- Khajanchi, Subhas & Ghosh, Dibakar, 2015. "The combined effects of optimal control in cancer remission," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 375-388.
- Khajanchi, Subhas, 2017. "Modeling the dynamics of stage-structure predator-prey system with Monod–Haldane type response function," Applied Mathematics and Computation, Elsevier, vol. 302(C), pages 122-143.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mohammad Izadi & Mahmood Parsamanesh & Waleed Adel, 2022. "Numerical and Stability Investigations of the Waste Plastic Management Model in the Ocean System," Mathematics, MDPI, vol. 10(23), pages 1-26, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sardar, Mrinmoy & Biswas, Santosh & Khajanchi, Subhas, 2021. "The impact of distributed time delay in a tumor-immune interaction system," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Khajanchi, Subhas & Nieto, Juan J., 2019. "Mathematical modeling of tumor-immune competitive system, considering the role of time delay," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 180-205.
- Sardar, Mrinmoy & Khajanchi, Subhas & Biswas, Santosh & Ghosh, Sumana, 2024. "A mathematical model for tumor-immune competitive system with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
- Li, Qian & Xiao, Yanni, 2019. "Bifurcation analyses and hormetic effects of a discrete-time tumor model," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
- Han, Haoming & Zhang, Jing & Liu, Yan, 2023. "Stability analysis of hybrid high-order nonlinear multiple time-delayed coupled systems via aperiodically intermittent control," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Khajanchi, Subhas, 2018. "Modeling the dynamics of glioma-immune surveillance," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 108-118.
- Khajanchi, Subhas & Bera, Sovan & Roy, Tapan Kumar, 2021. "Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 354-378.
- Liu, Yujuan & Lu, Qiong, 2020. "Hopf bifurcations in 3D competitive system with mixing exponential and rational growth rates," Applied Mathematics and Computation, Elsevier, vol. 378(C).
- Liu, Xiangdong & Li, Qingze & Pan, Jianxin, 2018. "A deterministic and stochastic model for the system dynamics of tumor–immune responses to chemotherapy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 162-176.
- Svetlana Bunimovich-Mendrazitsky & Benzion Shklyar, 2017. "Optimization of Combined Leukemia Therapy by Finite-Dimensional Optimal Control Modeling," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 218-235, October.
- Khajanchi, Subhas & Ghosh, Dibakar, 2015. "The combined effects of optimal control in cancer remission," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 375-388.
- Zhao, Zhong & Pang, Liuyong & Li, Qiuying, 2021. "Analysis of a hybrid impulsive tumor-immune model with immunotherapy and chemotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
- Dzyubak, Larysa & Dzyubak, Oleksandr & Awrejcewicz, Jan, 2023. "Nonlinear multiscale diffusion cancer invasion model with memory of states," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Bera, Sovan & Khajanchi, Subhas & Roy, Tapan Kumar, 2022. "Dynamics of an HTLV-I infection model with delayed CTLs immune response," Applied Mathematics and Computation, Elsevier, vol. 430(C).
- Yousefpour, Amin & Jahanshahi, Hadi & Bekiros, Stelios, 2020. "Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
- Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
- Deng, Shuning & Ji, Jinchen & Wen, Guilin & Xu, Huidong, 2021. "A comparative study of the dynamics of a three-disk dynamo system with and without time delay," Applied Mathematics and Computation, Elsevier, vol. 399(C).
- Das, Parthasakha & Das, Samhita & Das, Pritha & Rihan, Fathalla A. & Uzuntarla, Muhammet & Ghosh, Dibakar, 2021. "Optimal control strategy for cancer remission using combinatorial therapy: A mathematical model-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
- Ebraheem Alzahrani & M. M. El-Dessoky & Muhammad Altaf Khan, 2023. "Mathematical Model to Understand the Dynamics of Cancer, Prevention Diagnosis and Therapy," Mathematics, MDPI, vol. 11(9), pages 1-17, April.
- Tang, Xiaosong, 2022. "Periodic solutions and spatial patterns induced by mixed delays in a diffusive spruce budworm model with Holling II predation function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 420-429.
More about this item
Keywords
Mathematical model; Brain tumor; Sensitivity analysis; Controllability; T11 target structure;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007001. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.