IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics0960077921007001.html
   My bibliography  Save this article

The impact of immunotherapy on a glioma immune interaction model

Author

Listed:
  • Khajanchi, Subhas

Abstract

Glioblastoma, a highly aggressive in primary brain tumor and has exceptionally poor prognosis, is refractory to conventional treatments, such as chemotherapy, surgery and radiation. This study aims at aiding in the design of more successful glioma therapy. To understand the dynamics under what circumstances the glioma cells can be eradicated, we propose and analyze a mechanistic model for malignant gliomas and immune system interplays that may ensue upon direct intra-tumoral administration of immunotherapeutic agent T11 target structure. Our mathematical model encompasses considerations of the interactive dynamics of glioma cells, glioma-specific CD8+T cells, macrophages, immuno-suppressive cytokine TGF-β and immuno-stimulatory cytokine IFN-γ. The proposed mathematical model successfully retrieved clinical response to the immunotherapeutic drug T11 target structure for glioma cells. Our model enables us to identify the treatment regimen for a determined time window, in order to obtain an admissible concentration of glioma cell population. To mathematically model the dynamics of malignant gliomas development, before and after administration of immunotherapeutic treatment strategy, we derived the local asymptotic stability for the biologically feasible equilibrium points and the local relative controllability conditions for this coupled system of nonlinear ordinary differential equations. The system undergoes sensitivity analysis to identify the most sensitive parameters with respect to glioma cells. Numerical simulations were conducted for model verification and for retrieving putative treatment scenarios. The model simulations suggest that the immunotherapy has an impact in reducing the growth of glioma cell population and also an impact in enhancing the cell count of macrophages and CD8+T cell populations.

Suggested Citation

  • Khajanchi, Subhas, 2021. "The impact of immunotherapy on a glioma immune interaction model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007001
    DOI: 10.1016/j.chaos.2021.111346
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921007001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khajanchi, Subhas, 2018. "Modeling the dynamics of glioma-immune surveillance," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 108-118.
    2. Khajanchi, Subhas, 2017. "Modeling the dynamics of stage-structure predator-prey system with Monod–Haldane type response function," Applied Mathematics and Computation, Elsevier, vol. 302(C), pages 122-143.
    3. L. Berezansky & S. Bunimovich-Mendrazitsky & B. Shklyar, 2015. "Stability and Controllability Issues in Mathematical Modeling of the Intensive Treatment of Leukemia," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 326-341, October.
    4. Khajanchi, Subhas & Nieto, Juan J., 2019. "Mathematical modeling of tumor-immune competitive system, considering the role of time delay," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 180-205.
    5. Khajanchi, Subhas, 2015. "Bifurcation analysis of a delayed mathematical model for tumor growth," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 264-276.
    6. Sardar, Mrinmoy & Biswas, Santosh & Khajanchi, Subhas, 2021. "The impact of distributed time delay in a tumor-immune interaction system," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Khajanchi, Subhas & Ghosh, Dibakar, 2015. "The combined effects of optimal control in cancer remission," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 375-388.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Izadi & Mahmood Parsamanesh & Waleed Adel, 2022. "Numerical and Stability Investigations of the Waste Plastic Management Model in the Ocean System," Mathematics, MDPI, vol. 10(23), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sardar, Mrinmoy & Biswas, Santosh & Khajanchi, Subhas, 2021. "The impact of distributed time delay in a tumor-immune interaction system," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Khajanchi, Subhas & Nieto, Juan J., 2019. "Mathematical modeling of tumor-immune competitive system, considering the role of time delay," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 180-205.
    3. Sardar, Mrinmoy & Khajanchi, Subhas & Biswas, Santosh & Ghosh, Sumana, 2024. "A mathematical model for tumor-immune competitive system with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    4. Li, Qian & Xiao, Yanni, 2019. "Bifurcation analyses and hormetic effects of a discrete-time tumor model," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    5. Han, Haoming & Zhang, Jing & Liu, Yan, 2023. "Stability analysis of hybrid high-order nonlinear multiple time-delayed coupled systems via aperiodically intermittent control," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Khajanchi, Subhas, 2018. "Modeling the dynamics of glioma-immune surveillance," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 108-118.
    7. Khajanchi, Subhas & Bera, Sovan & Roy, Tapan Kumar, 2021. "Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 354-378.
    8. Liu, Yujuan & Lu, Qiong, 2020. "Hopf bifurcations in 3D competitive system with mixing exponential and rational growth rates," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    9. Liu, Xiangdong & Li, Qingze & Pan, Jianxin, 2018. "A deterministic and stochastic model for the system dynamics of tumor–immune responses to chemotherapy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 162-176.
    10. Svetlana Bunimovich-Mendrazitsky & Benzion Shklyar, 2017. "Optimization of Combined Leukemia Therapy by Finite-Dimensional Optimal Control Modeling," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 218-235, October.
    11. Khajanchi, Subhas & Ghosh, Dibakar, 2015. "The combined effects of optimal control in cancer remission," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 375-388.
    12. Zhao, Zhong & Pang, Liuyong & Li, Qiuying, 2021. "Analysis of a hybrid impulsive tumor-immune model with immunotherapy and chemotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    13. Dzyubak, Larysa & Dzyubak, Oleksandr & Awrejcewicz, Jan, 2023. "Nonlinear multiscale diffusion cancer invasion model with memory of states," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    14. Bera, Sovan & Khajanchi, Subhas & Roy, Tapan Kumar, 2022. "Dynamics of an HTLV-I infection model with delayed CTLs immune response," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    15. Yousefpour, Amin & Jahanshahi, Hadi & Bekiros, Stelios, 2020. "Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    16. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    17. Deng, Shuning & Ji, Jinchen & Wen, Guilin & Xu, Huidong, 2021. "A comparative study of the dynamics of a three-disk dynamo system with and without time delay," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    18. Das, Parthasakha & Das, Samhita & Das, Pritha & Rihan, Fathalla A. & Uzuntarla, Muhammet & Ghosh, Dibakar, 2021. "Optimal control strategy for cancer remission using combinatorial therapy: A mathematical model-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    19. Ebraheem Alzahrani & M. M. El-Dessoky & Muhammad Altaf Khan, 2023. "Mathematical Model to Understand the Dynamics of Cancer, Prevention Diagnosis and Therapy," Mathematics, MDPI, vol. 11(9), pages 1-17, April.
    20. Tang, Xiaosong, 2022. "Periodic solutions and spatial patterns induced by mixed delays in a diffusive spruce budworm model with Holling II predation function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 420-429.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.