IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v145y2021ics0960077921001181.html
   My bibliography  Save this article

Modeling of measles epidemic with optimized fractional order under Caputo differential operator

Author

Listed:
  • Qureshi, Sania
  • Jan, Rashid

Abstract

Memory is an important characteristic of an epidemic. One of such memory dependent and highly contagious viral diseases is measles that is also responsible for more than 140,000 deaths in 2018 in various regions of Asia and Africa. In order to better understand the transmission dynamics of measles, we have developed a new epidemiological model while considering both integer and fractional order operators and presented comparison. The Caputo fractional model has a unique solution with the positively invariant region. On the basis of basic reproduction number R0, stability analysis is discussed and sensitivity of parameters is investigated using PRCC global technique. Not only parameters but fractional order χ is also optimized via nonlinear least-squares approach with availability of statistical data obtained from WHO. Various simulations in terms of time series plots, 3D meshes and contours are carried out to observe effects of parameters on dynamics of the epidemic wherein it is said to be persistent for χ→0 demonstrating the role being played by Caputo fractional derivative towards measles dynamics.

Suggested Citation

  • Qureshi, Sania & Jan, Rashid, 2021. "Modeling of measles epidemic with optimized fractional order under Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001181
    DOI: 10.1016/j.chaos.2021.110766
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921001181
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emmanuel Njeuhmeli & Melissa Schnure & Andrea Vazzano & Elizabeth Gold & Peter Stegman & Katharine Kripke & Michel Tchuenche & Lori Bollinger & Steven Forsythe & Catherine Hankins, 2019. "Using mathematical modeling to inform health policy: A case study from voluntary medical male circumcision scale-up in eastern and southern Africa and proposed framework for success," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-15, March.
    2. Emile Franc Doungmo Goufo & Suares Clovis Oukouomi Noutchie & Stella Mugisha, 2014. "A Fractional SEIR Epidemic Model for Spatial and Temporal Spread of Measles in Metapopulations," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-6, June.
    3. Pang, Liuyong & Ruan, Shigui & Liu, Sanhong & Zhao, Zhong & Zhang, Xinan, 2015. "Transmission dynamics and optimal control of measles epidemics," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 131-147.
    4. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 111-118.
    5. Qureshi, Sania, 2020. "Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    7. Qureshi, Sania & Atangana, Abdon, 2019. "Mathematical analysis of dengue fever outbreak by novel fractional operators with field data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    8. Qureshi, Sania & Memon, Zaib-un-Nisa, 2020. "Monotonically decreasing behavior of measles epidemic well captured by Atangana–Baleanu–Caputo fractional operator under real measles data of Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yasmin, Humaira, 2022. "Effect of vaccination on non-integer dynamics of pneumococcal pneumonia infection," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Alfifi, H.Y., 2022. "Stability analysis for Schnakenberg reaction-diffusion model with gene expression time delay," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Farman, Muhammad & Xu, Changjin & Shehzad, Aamir & Akgul, Ali, 2024. "Modeling and dynamics of measles via fractional differential operator of singular and non-singular kernels," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 461-488.
    4. Shah Hussain & Elissa Nadia Madi & Naveed Iqbal & Thongchai Botmart & Yeliz Karaca & Wael W. Mohammed, 2021. "Fractional Dynamics of Vector-Borne Infection with Sexual Transmission Rate and Vaccination," Mathematics, MDPI, vol. 9(23), pages 1-22, December.
    5. Shah, Kamal & Arfan, Muhammad & Ullah, Aman & Al-Mdallal, Qasem & Ansari, Khursheed J. & Abdeljawad, Thabet, 2022. "Computational study on the dynamics of fractional order differential equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. El-Mesady, A. & Elsonbaty, Amr & Adel, Waleed, 2022. "On nonlinear dynamics of a fractional order monkeypox virus model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadav, Ram Prasad & Renu Verma,, 2020. "A numerical simulation of fractional order mathematical modeling of COVID-19 disease in case of Wuhan China," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Qureshi, Sania, 2020. "Periodic dynamics of rubella epidemic under standard and fractional Caputo operator with real data from Pakistan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 151-165.
    3. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    4. Wang, Wanting & Khan, Muhammad Altaf & Fatmawati, & Kumam, P. & Thounthong, P., 2019. "A comparison study of bank data in fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 369-384.
    5. Qureshi, Sania & Atangana, Abdon, 2020. "Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    6. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    7. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    8. Jan, Rashid & Khan, Muhammad Altaf & Kumam, Poom & Thounthong, Phatiphat, 2019. "Modeling the transmission of dengue infection through fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 189-216.
    9. Abu Arqub, Omar & Al-Smadi, Mohammed, 2020. "An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    10. Christopher Nicholas Angstmann & Byron Alexander Jacobs & Bruce Ian Henry & Zhuang Xu, 2020. "Intrinsic Discontinuities in Solutions of Evolution Equations Involving Fractional Caputo–Fabrizio and Atangana–Baleanu Operators," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    11. Zuñiga Aguilar, C.J. & Gómez-Aguilar, J.F. & Alvarado-Martínez, V.M. & Romero-Ugalde, H.M., 2020. "Fractional order neural networks for system identification," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    12. Berhe, Hailay Weldegiorgis & Qureshi, Sania & Shaikh, Asif Ali, 2020. "Deterministic modeling of dysentery diarrhea epidemic under fractional Caputo differential operator via real statistical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    13. Akgül, Ali & Modanli, Mahmut, 2019. "Crank–Nicholson difference method and reproducing kernel function for third order fractional differential equations in the sense of Atangana–Baleanu Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 10-16.
    14. Gao, Fei & Li, Xiling & Li, Wenqin & Zhou, Xianjin, 2021. "Stability analysis of a fractional-order novel hepatitis B virus model with immune delay based on Caputo-Fabrizio derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Alfifi, H.Y., 2022. "Stability analysis for Schnakenberg reaction-diffusion model with gene expression time delay," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    16. Mustapha, Umar Tasiu & Qureshi, Sania & Yusuf, Abdullahi & Hincal, Evren, 2020. "Fractional modeling for the spread of Hookworm infection under Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    17. Qureshi, Sania & Memon, Zaib-un-Nisa, 2020. "Monotonically decreasing behavior of measles epidemic well captured by Atangana–Baleanu–Caputo fractional operator under real measles data of Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    18. Qureshi, Sania, 2020. "Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    19. Baba, Isa Abdullahi & Nasidi, Bashir Ahmad, 2021. "Fractional Order Model for the Role of Mild Cases in the Transmission of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    20. Chukwu, C.W. & Fatmawati, & Utoyo, M.I. & Setiawan, A. & Akanni, J.O., 2024. "Fractional model of HIV transmission on workplace productivity using real data from Indonesia," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 1089-1103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.