IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923008068.html
   My bibliography  Save this article

A fractional mathematical model of heartwater transmission dynamics considering nymph and adult amblyomma ticks

Author

Listed:
  • Asamoah, Joshua Kiddy K.
  • Fatmawati,

Abstract

Heartwater is a tick-borne illness that affects ruminants and is carried by the amblyomma ticks. The condition may sometimes be deadly. This paper studies the Caputo fractional version of the disease spread in domestic ruminants and amblyomma ticks. We obtain the positivity and boundedness condition through the Laplace transform. The stability state of the proposed model is obtained using the Ulam–Hyers and Ulam–Hyers–Rassias stability conditions. The heartwater-free equilibrium point is obtained. The fractional model is fitted to the heartwater incidence data from 2006 to 2019. The heartwater reproduction number, R0τ, from the parameter estimation is R0τ=1.9345 with a fitting fractional order, τ, of 0.6990. The residuals from the data fitting were randomly distributed, indicating that the proposed model could be used for further predictions. Furthermore, we observed the dynamic effect of varying the fractional order and noticed that changing the fractional order produces crisscrossed behaviour in infected compartments of domestic ruminants and infected adult amblyomma ticks. Finally, we showed the relative impact of varying the transmission rates and the infectivity potential of peractive, active, and recovered carrier ruminants on the overall dynamics of the disease. Thus, a reduction in the rate of transmission from nymph and adult amblyomma ticks to vaccinated ticks will increase the number of healthy domestic ruminants.

Suggested Citation

  • Asamoah, Joshua Kiddy K. & Fatmawati,, 2023. "A fractional mathematical model of heartwater transmission dynamics considering nymph and adult amblyomma ticks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923008068
    DOI: 10.1016/j.chaos.2023.113905
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923008068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asamoah, Joshua Kiddy K. & Jin, Zhen & Sun, Gui-Quan & Seidu, Baba & Yankson, Ernest & Abidemi, Afeez & Oduro, F.T. & Moore, Stephen E. & Okyere, Eric, 2021. "Sensitivity assessment and optimal economic evaluation of a new COVID-19 compartmental epidemic model with control interventions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Mangal, Shiv & Misra, O.P. & Dhar, Joydip, 2023. "Fractional-order deterministic epidemic model for the spread and control of HIV/AIDS with special reference to Mexico and India," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 82-102.
    3. Qureshi, Sania, 2020. "Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    5. Nazir, Ghazala & Shah, Kamal & Debbouche, Amar & Khan, Rahmat Ali, 2020. "Study of HIV mathematical model under nonsingular kernel type derivative of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Aliyu, Aliyu Isa & Inc, Mustafa & Yusuf, Abdullahi & Baleanu, Dumitru, 2018. "A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 268-277.
    7. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Tuan, Nguyen Huy & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A mathematical model for COVID-19 transmission by using the Caputo fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Anwarud Din & Yongjin Li & Abdullahi Yusuf & Aliyu Isa Ali, 2022. "Caputo Type Fractional Operator Applied To Hepatitis B System," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(01), pages 1-11, February.
    10. Xiao-Hong Zhang & Aatif Ali & Muhammad Altaf Khan & Mohammad Y. Alshahrani & Taseer Muhammad & Saeed Islam & Juan Luis García Guirao, 2021. "Mathematical Analysis of the TB Model with Treatment via Caputo-Type Fractional Derivative," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-15, November.
    11. Songkran Pleumpreedaporn & Chanidaporn Pleumpreedaporn & Jutarat Kongson & Chatthai Thaiprayoon & Jehad Alzabut & Weerawat Sudsutad, 2022. "Dynamical Analysis of Nutrient-Phytoplankton-Zooplankton Model with Viral Disease in Phytoplankton Species under Atangana-Baleanu-Caputo Derivative," Mathematics, MDPI, vol. 10(9), pages 1-33, May.
    12. Yusuf, Abdullahi & Acay, Bahar & Mustapha, Umar Tasiu & Inc, Mustafa & Baleanu, Dumitru, 2021. "Mathematical modeling of pine wilt disease with Caputo fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asamoah, Joshua Kiddy K. & Sun, Gui-Quan, 2023. "Fractional Caputo and sensitivity heat map for a gonorrhea transmission model in a sex structured population," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    2. Addai, Emmanuel & Zhang, Lingling & Ackora-Prah, Joseph & Gordon, Joseph Frank & Asamoah, Joshua Kiddy K. & Essel, John Fiifi, 2022. "Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Abidemi, Afeez & Ackora-Prah, Joseph & Fatoyinbo, Hammed Olawale & Asamoah, Joshua Kiddy K., 2022. "Lyapunov stability analysis and optimization measures for a dengue disease transmission model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    4. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Liu, Xuan & Ullah, Saif & Alshehri, Ahmed & Altanji, Mohamed, 2021. "Mathematical assessment of the dynamics of novel coronavirus infection with treatment: A fractional study," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    6. Arshad, Sadia & Siddique, Imran & Nawaz, Fariha & Shaheen, Aqila & Khurshid, Hina, 2023. "Dynamics of a fractional order mathematical model for COVID-19 epidemic transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    7. Hashem Najafi & Sina Etemad & Nichaphat Patanarapeelert & Joshua Kiddy K. Asamoah & Shahram Rezapour & Thanin Sitthiwirattham, 2022. "A Study on Dynamics of CD4 + T-Cells under the Effect of HIV-1 Infection Based on a Mathematical Fractal-Fractional Model via the Adams-Bashforth Scheme and Newton Polynomials," Mathematics, MDPI, vol. 10(9), pages 1-32, April.
    8. Kumar, Sunil & Chauhan, R.P. & Momani, Shaher & Hadid, Samir, 2021. "A study of fractional TB model due to mycobacterium tuberculosis bacteria," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    9. Wen-Jing Zhu & Shou-Feng Shen & Wen-Xiu Ma, 2022. "A (2+1)-Dimensional Fractional-Order Epidemic Model with Pulse Jumps for Omicron COVID-19 Transmission and Its Numerical Simulation," Mathematics, MDPI, vol. 10(14), pages 1-14, July.
    10. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    11. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Fatmawati, & Khan, Muhammad Altaf & Azizah, Muftiyatul & Windarto, & Ullah, Saif, 2019. "A fractional model for the dynamics of competition between commercial and rural banks in Indonesia," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 32-46.
    13. Batabyal, Saikat, 2021. "COVID-19: Perturbation dynamics resulting chaos to stable with seasonality transmission," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    14. Chen, Jinbao & Zheng, Yang & Liu, Dong & Du, Yang & Xiao, Zhihuai, 2023. "Quantitative stability analysis of complex nonlinear hydraulic turbine regulation system based on accurate calculation," Applied Energy, Elsevier, vol. 351(C).
    15. Yin, Xuecheng & Büyüktahtakın, İ. Esra & Patel, Bhumi P., 2023. "COVID-19: Data-Driven optimal allocation of ventilator supply under uncertainty and risk," European Journal of Operational Research, Elsevier, vol. 304(1), pages 255-275.
    16. Mohamed Jleli & Bessem Samet & Calogero Vetro, 2021. "Nonexistence Results for Higher Order Fractional Differential Inequalities with Nonlinearities Involving Caputo Fractional Derivative," Mathematics, MDPI, vol. 9(16), pages 1-11, August.
    17. Abidemi, Afeez & Owolabi, Kolade M. & Pindza, Edson, 2022. "Modelling the transmission dynamics of Lassa fever with nonlinear incidence rate and vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    18. Christopher Nicholas Angstmann & Byron Alexander Jacobs & Bruce Ian Henry & Zhuang Xu, 2020. "Intrinsic Discontinuities in Solutions of Evolution Equations Involving Fractional Caputo–Fabrizio and Atangana–Baleanu Operators," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    19. Idris Ahmed & Chanakarn Kiataramkul & Mubarak Muhammad & Jessada Tariboon, 2024. "Existence and Sensitivity Analysis of a Caputo Fractional-Order Diphtheria Epidemic Model," Mathematics, MDPI, vol. 12(13), pages 1-18, June.
    20. Manuel De la Sen & Asier Ibeas & Santiago Alonso-Quesada, 2022. "On the Supervision of a Saturated SIR Epidemic Model with Four Joint Control Actions for a Drastic Reduction in the Infection and the Susceptibility through Time," IJERPH, MDPI, vol. 19(3), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923008068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.