IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v134y2020ics0960077920301466.html
   My bibliography  Save this article

Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system

Author

Listed:
  • Qureshi, Sania

Abstract

Various infectious diseases primarily contain the characteristics of memory and non-locality. Keeping this in view; we have, in the present paper, proposed a new epidemiological system for the measles epidemic via Caputo fractional order operator which is not only a non-local operator but also contains all characteristics concerned with memory of the epidemic. The proposed system is autonomous in nature which has been made physically meaningful by dimensional homogeneity among the fractional order Caputo derivative and the biological parameters used in the system. Caputo fractional order parameter “τ” and the disease transmission rate “β” are fitted with nonlinear least-squares curve fitting technique while using real confirmed measles incidence cases for May-December, 2018 in Pakistan as reported by World Health Organization (WHO). Coming to mathematical analysis, the system is found to have unique solution under fixed point theory with biologically feasible region which is shown as positively invariant. Steady-states are determined to be locally asymptotically stable under different conditions on the basic reproduction number whereas the least and the most influential parameters for the system are computed via forward sensitivity index analysis. Finally, the Caputo system is simulated using Adams technique devised for finding approximate solutions of fractional Caputo ordinary differential equations. Comparative analysis is carried out and effects of different biological parameters on dynamics and transmission of the measles epidemic have been thoroughly investigated.

Suggested Citation

  • Qureshi, Sania, 2020. "Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:chsofr:v:134:y:2020:i:c:s0960077920301466
    DOI: 10.1016/j.chaos.2020.109744
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920301466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109744?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 111-118.
    2. Qureshi, Sania & Yusuf, Abdullahi & Shaikh, Asif Ali & Inc, Mustafa, 2019. "Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    3. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    4. Qureshi, Sania & Atangana, Abdon, 2019. "Mathematical analysis of dengue fever outbreak by novel fractional operators with field data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    5. Qureshi, Sania & Bonyah, Ebenezer & Shaikh, Asif Ali, 2019. "Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asamoah, Joshua Kiddy K. & Fatmawati,, 2023. "A fractional mathematical model of heartwater transmission dynamics considering nymph and adult amblyomma ticks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Alfifi, H.Y., 2022. "Stability analysis for Schnakenberg reaction-diffusion model with gene expression time delay," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Chukwu, C.W. & Fatmawati, & Utoyo, M.I. & Setiawan, A. & Akanni, J.O., 2024. "Fractional model of HIV transmission on workplace productivity using real data from Indonesia," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 1089-1103.
    4. Arshad, Sadia & Siddique, Imran & Nawaz, Fariha & Shaheen, Aqila & Khurshid, Hina, 2023. "Dynamics of a fractional order mathematical model for COVID-19 epidemic transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Mohamed Jleli & Bessem Samet & Calogero Vetro, 2021. "Nonexistence Results for Higher Order Fractional Differential Inequalities with Nonlinearities Involving Caputo Fractional Derivative," Mathematics, MDPI, vol. 9(16), pages 1-11, August.
    6. Zhang, Tao & Lu, Zhong-rong & Liu, Ji-ke & Chen, Yan-mao & Liu, Guang, 2023. "Parameter estimation of linear fractional-order system from laplace domain data," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    7. Dalal Yahya Alzahrani & Fuaada Mohd Siam & Farah A. Abdullah, 2023. "Elucidating the Effects of Ionizing Radiation on Immune Cell Populations: A Mathematical Modeling Approach with Special Emphasis on Fractional Derivatives," Mathematics, MDPI, vol. 11(7), pages 1-21, April.
    8. Kaviya, R. & Priyanka, M. & Muthukumar, P., 2022. "Mean-square exponential stability of impulsive conformable fractional stochastic differential system with application on epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Manuel De la Sen & Asier Ibeas & Santiago Alonso-Quesada, 2022. "On the Supervision of a Saturated SIR Epidemic Model with Four Joint Control Actions for a Drastic Reduction in the Infection and the Susceptibility through Time," IJERPH, MDPI, vol. 19(3), pages 1-26, January.
    10. Qureshi, Sania & Jan, Rashid, 2021. "Modeling of measles epidemic with optimized fractional order under Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustapha, Umar Tasiu & Qureshi, Sania & Yusuf, Abdullahi & Hincal, Evren, 2020. "Fractional modeling for the spread of Hookworm infection under Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    2. Qureshi, Sania & Memon, Zaib-un-Nisa, 2020. "Monotonically decreasing behavior of measles epidemic well captured by Atangana–Baleanu–Caputo fractional operator under real measles data of Pakistan," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    3. Yusuf, Abdullahi & Qureshi, Sania & Feroz Shah, Syed, 2020. "Mathematical analysis for an autonomous financial dynamical system via classical and modern fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    4. Qureshi, Sania & Aziz, Shaheen, 2020. "Fractional modeling for a chemical kinetic reaction in a batch reactor via nonlocal operator with power law kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    5. Sekerci, Yadigar & Ozarslan, Ramazan, 2020. "Respiration Effect on Plankton–Oxygen Dynamics in view of non-singular time fractional derivatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    6. Qureshi, Sania, 2020. "Periodic dynamics of rubella epidemic under standard and fractional Caputo operator with real data from Pakistan," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 151-165.
    7. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    8. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    9. Wang, Wanting & Khan, Muhammad Altaf & Fatmawati, & Kumam, P. & Thounthong, P., 2019. "A comparison study of bank data in fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 369-384.
    10. Rubayyi T. Alqahtani & Abdullahi Yusuf & Ravi P. Agarwal, 2021. "Mathematical Analysis of Oxygen Uptake Rate in Continuous Process under Caputo Derivative," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    11. Qureshi, Sania & Atangana, Abdon, 2020. "Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    12. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 32-40.
    13. Lu, D. & Osman, M.S. & Khater, M.M.A. & Attia, R.A.M. & Baleanu, D., 2020. "Analytical and numerical simulations for the kinetics of phase separation in iron (Fe–Cr–X (X=Mo,Cu)) based on ternary alloys," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    14. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    15. Jan, Rashid & Khan, Muhammad Altaf & Kumam, Poom & Thounthong, Phatiphat, 2019. "Modeling the transmission of dengue infection through fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 189-216.
    16. Abu Arqub, Omar & Al-Smadi, Mohammed, 2020. "An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    17. Zuñiga Aguilar, C.J. & Gómez-Aguilar, J.F. & Alvarado-Martínez, V.M. & Romero-Ugalde, H.M., 2020. "Fractional order neural networks for system identification," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    18. Berhe, Hailay Weldegiorgis & Qureshi, Sania & Shaikh, Asif Ali, 2020. "Deterministic modeling of dysentery diarrhea epidemic under fractional Caputo differential operator via real statistical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    19. Kumar, Pushpendra & Erturk, Vedat Suat, 2021. "Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    20. Akgül, Ali & Modanli, Mahmut, 2019. "Crank–Nicholson difference method and reproducing kernel function for third order fractional differential equations in the sense of Atangana–Baleanu Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 10-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:134:y:2020:i:c:s0960077920301466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.