IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i11p2438-d179828.html
   My bibliography  Save this article

Heat-Related Health Impacts under Scenarios of Climate and Population Change

Author

Listed:
  • Philip E. Morefield

    (Office of Research and Development, National Center for Environmental Assessment, US Environmental Protection Agency, Washington, DC 20460, USA)

  • Neal Fann

    (Office of Air and Radiation, Office of Air Quality, Planning and Standards, US Environmental Protection Agency, Durham, NC 27709, USA)

  • Anne Grambsch

    (Office of Research and Development, National Center for Environmental Assessment, US Environmental Protection Agency, Washington, DC 20460, USA)

  • William Raich

    (Industrial Economics, Inc., Cambridge, MA 02140, USA)

  • Christopher P. Weaver

    (Office of Research and Development, National Center for Environmental Assessment, US Environmental Protection Agency, Washington, DC 20460, USA)

Abstract

Recent assessments have found that a warming climate, with associated increases in extreme heat events, could profoundly affect human health. This paper describes a new modeling and analysis framework, built around the Benefits Mapping and Analysis Program—Community Edition (BenMAP), for estimating heat-related mortality as a function of changes in key factors that determine the health impacts of extreme heat. This new framework has the flexibility to integrate these factors within health risk assessments, and to sample across the uncertainties in them, to provide a more comprehensive picture of total health risk from climate-driven increases in extreme heat. We illustrate the framework’s potential with an updated set of projected heat-related mortality estimates for the United States. These projections combine downscaled Coupled Modeling Intercomparison Project 5 (CMIP5) climate model simulations for Representative Concentration Pathway (RCP)4.5 and RCP8.5, using the new Locating and Selecting Scenarios Online (LASSO) tool to select the most relevant downscaled climate realizations for the study, with new population projections from EPA’s Integrated Climate and Land Use Scenarios (ICLUS) project. Results suggest that future changes in climate could cause approximately from 3000 to more than 16,000 heat-related deaths nationally on an annual basis. This work demonstrates that uncertainties associated with both future population and future climate strongly influence projected heat-related mortality. This framework can be used to systematically evaluate the sensitivity of projected future heat-related mortality to the key driving factors and major sources of methodological uncertainty inherent in such calculations, improving the scientific foundations of risk-based assessments of climate change and human health.

Suggested Citation

  • Philip E. Morefield & Neal Fann & Anne Grambsch & William Raich & Christopher P. Weaver, 2018. "Heat-Related Health Impacts under Scenarios of Climate and Population Change," IJERPH, MDPI, vol. 15(11), pages 1-17, November.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:11:p:2438-:d:179828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/11/2438/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/11/2438/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mengmeng Li & Shaohua Gu & Peng Bi & Jun Yang & Qiyong Liu, 2015. "Heat Waves and Morbidity: Current Knowledge and Further Direction-A Comprehensive Literature Review," IJERPH, MDPI, vol. 12(5), pages 1-28, May.
    2. Brian C. O’Neill & James Done & Andrew Gettelman & Peter Lawrence & Flavio Lehner & Jean-Francois Lamarque & Lei Lin & Andrew Monaghan & Keith Oleson & Xiaolin Ren & Benjamin Sanderson & Claudia Tebal, 2018. "The Benefits of Reduced Anthropogenic Climate changE (BRACE): a synthesis," Climatic Change, Springer, vol. 146(3), pages 287-301, February.
    3. Simon Gosling & Glenn McGregor & Jason Lowe, 2012. "The benefits of quantifying climate model uncertainty in climate change impacts assessment: an example with heat-related mortality change estimates," Climatic Change, Springer, vol. 112(2), pages 217-231, May.
    4. Brian C. O’Neill & Andrew Gettelman, 2018. "An introduction to the special issue on the Benefits of Reduced Anthropogenic Climate changE (BRACE)," Climatic Change, Springer, vol. 146(3), pages 277-285, February.
    5. Knowlton, K. & Lynn, B. & Goldberg, R.A. & Rosenzweig, C. & Hogrefe, C. & Rosenthal, J.K. & Kinney, P.L., 2007. "Projecting heat-related mortality impacts under a changing climate in the New York City region," American Journal of Public Health, American Public Health Association, vol. 97(11), pages 2028-2034.
    6. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guanghui Yu & Feifan Wang & Jing Hu & Yan Liao & Xianzhao Liu, 2019. "Value Assessment of Health Losses Caused by PM 2.5 in Changsha City, China," IJERPH, MDPI, vol. 16(11), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisaveta P. Petkova & Radley M. Horton & Daniel A. Bader & Patrick L. Kinney, 2013. "Projected Heat-Related Mortality in the U.S. Urban Northeast," IJERPH, MDPI, vol. 10(12), pages 1-14, December.
    2. Christofer Åström & Daniel Oudin Åström & Camilla Andersson & Kristie L. Ebi & Bertil Forsberg, 2017. "Vulnerability Reduction Needed to Maintain Current Burdens of Heat-Related Mortality in a Changing Climate—Magnitude and Determinants," IJERPH, MDPI, vol. 14(7), pages 1-10, July.
    3. Courtney W. Mason & Pate Neumann, 2024. "The Impacts of Climate Change on Tourism Operators, Trail Experience and Land Use Management in British Columbia’s Backcountry," Land, MDPI, vol. 13(1), pages 1-16, January.
    4. G. Brooke Anderson & Keith W. Oleson & Bryan Jones & Roger D. Peng, 2018. "Projected trends in high-mortality heatwaves under different scenarios of climate, population, and adaptation in 82 US communities," Climatic Change, Springer, vol. 146(3), pages 455-470, February.
    5. Gino D. Marinucci & George Luber & Christopher K. Uejio & Shubhayu Saha & Jeremy J. Hess, 2014. "Building Resilience against Climate Effects—A Novel Framework to Facilitate Climate Readiness in Public Health Agencies," IJERPH, MDPI, vol. 11(6), pages 1-26, June.
    6. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    7. Chateau, J. & Dellink, R. & Lanzi, E. & Magne, B., 2012. "Long-term economic growth and environmental pressure: reference scenarios for future global projections," Conference papers 332249, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Martina S. Ragettli & Apolline Saucy & Benjamin Flückiger & Danielle Vienneau & Kees de Hoogh & Ana M. Vicedo-Cabrera & Christian Schindler & Martin Röösli, 2023. "Explorative Assessment of the Temperature–Mortality Association to Support Health-Based Heat-Warning Thresholds: A National Case-Crossover Study in Switzerland," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    9. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    10. Nicole Costa Resende Ferreira & Jarbas Honorio Miranda, 2021. "Projected changes in corn crop productivity and profitability in Parana, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3236-3250, March.
    11. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    12. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    13. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    14. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    15. H. Athar, 2013. "Seasonal variability of the observed and the projected daily temperatures in northern Saudi Arabia," Climatic Change, Springer, vol. 119(2), pages 333-344, July.
    16. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    17. Tamás Hajdu & Gábor Hajdu, 2022. "Temperature, climate change, and human conception rates: evidence from Hungary," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(4), pages 1751-1776, October.
    18. Meraj Sarwary & Senthilnathan Samiappan & Ghulam Dastgir Khan & Masaood Moahid, 2023. "Climate Change and Cereal Crops Productivity in Afghanistan: Evidence Based on Panel Regression Model," Sustainability, MDPI, vol. 15(14), pages 1-13, July.
    19. Jiufeng Wei & Hufang Zhang & Wanqing Zhao & Qing Zhao, 2017. "Niche shifts and the potential distribution of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) under climate change," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-17, July.
    20. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:11:p:2438-:d:179828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.