IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p593-d74817.html
   My bibliography  Save this article

Energy Optimization in Smart Homes Using Customer Preference and Dynamic Pricing

Author

Listed:
  • Muhammad Babar Rasheed

    (COMSATS Institute of Information Technology, Islamabad 44000, Pakistan)

  • Nadeem Javaid

    (COMSATS Institute of Information Technology, Islamabad 44000, Pakistan)

  • Ashfaq Ahmad

    (COMSATS Institute of Information Technology, Islamabad 44000, Pakistan)

  • Mohsin Jamil

    (School of Mechanical & Manufacturing Engineering, National University of Science and Technology, Islamabad 44000, Pakistan)

  • Zahoor Ali Khan

    (Internetworking Program, Faculty of Engineering, Dalhousie University, Halifax, NS B3J 4R2, Canada)

  • Umar Qasim

    (Cameron Library, University of Alberta, Edmonton, AB T6G 2J8, Canada)

  • Nabil Alrajeh

    (Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh 11633, Saudi Arabia)

Abstract

In this paper, we present an energy optimization technique to schedule three types of household appliances (user dependent, interactive schedulable and unschedulable) in response to the dynamic behaviours of customers, electricity prices and weather conditions. Our optimization technique schedules household appliances in real time to optimally control their energy consumption, such that the electricity bills of end users are reduced while not compromising on user comfort. More specifically, we use the binary multiple knapsack problem formulation technique to design an objective function, which is solved via the constraint optimization technique. Simulation results show that average aggregated energy savings with and without considering the human presence control system are 11.77% and 5.91%, respectively.

Suggested Citation

  • Muhammad Babar Rasheed & Nadeem Javaid & Ashfaq Ahmad & Mohsin Jamil & Zahoor Ali Khan & Umar Qasim & Nabil Alrajeh, 2016. "Energy Optimization in Smart Homes Using Customer Preference and Dynamic Pricing," Energies, MDPI, vol. 9(8), pages 1-25, July.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:593-:d:74817
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/593/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/593/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Widén, Joakim & Wäckelgård, Ewa, 2010. "A high-resolution stochastic model of domestic activity patterns and electricity demand," Applied Energy, Elsevier, vol. 87(6), pages 1880-1892, June.
    2. Danish Mahmood & Nadeem Javaid & Nabil Alrajeh & Zahoor Ali Khan & Umar Qasim & Imran Ahmed & Manzoor Ilahi, 2016. "Realistic Scheduling Mechanism for Smart Homes," Energies, MDPI, vol. 9(3), pages 1-28, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanan Liu & Yixuan Gao & Yu Hao & Hua Liao, 2016. "The Relationship between Residential Electricity Consumption and Income: A Piecewise Linear Model with Panel Data," Energies, MDPI, vol. 9(10), pages 1-11, October.
    2. Zafar Iqbal & Nadeem Javaid & Syed Muhammad Mohsin & Syed Muhammad Abrar Akber & Muhammad Khalil Afzal & Farruh Ishmanov, 2018. "Performance Analysis of Hybridization of Heuristic Techniques for Residential Load Scheduling," Energies, MDPI, vol. 11(10), pages 1-31, October.
    3. Fahim Muntasir & Anusheel Chapagain & Kishan Maharjan & Mirza Jabbar Aziz Baig & Mohsin Jamil & Ashraf Ali Khan, 2023. "Developing an Appropriate Energy Trading Algorithm and Techno-Economic Analysis between Peer-to-Peer within a Partly Independent Microgrid," Energies, MDPI, vol. 16(3), pages 1-21, February.
    4. Ihsan Ullah & Muhammad Babar Rasheed & Thamer Alquthami & Shahzadi Tayyaba, 2019. "A Residential Load Scheduling with the Integration of On-Site PV and Energy Storage Systems in Micro-Grid," Sustainability, MDPI, vol. 12(1), pages 1-36, December.
    5. Wanlei Xue & Xin Zhao & Yan Li & Ying Mu & Haisheng Tan & Yixin Jia & Xuejie Wang & Huiru Zhao & Yihang Zhao, 2023. "Research on the Optimal Design of Seasonal Time-of-Use Tariff Based on the Price Elasticity of Electricity Demand," Energies, MDPI, vol. 16(4), pages 1-17, February.
    6. Emmanuel Guillen-Garcia & Angel L. Zorita-Lamadrid & Oscar Duque-Perez & Luis Morales-Velazquez & Roque Alfredo Osornio-Rios & Rene De Jesus Romero-Troncoso, 2017. "Power Consumption Analysis of Electrical Installations at Healthcare Facility," Energies, MDPI, vol. 10(1), pages 1-14, January.
    7. Tuomela, Sanna & de Castro Tomé, Mauricio & Iivari, Netta & Svento, Rauli, 2021. "Impacts of home energy management systems on electricity consumption," Applied Energy, Elsevier, vol. 299(C).
    8. Thamer Alquthami & Ahmad H. Milyani & Muhammad Awais & Muhammad B. Rasheed, 2021. "An Incentive Based Dynamic Pricing in Smart Grid: A Customer’s Perspective," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    9. Martina Arosio & Davide Falabretti, 2023. "DER Participation in Ancillary Services Market: An Analysis of Current Trends and Future Opportunities," Energies, MDPI, vol. 16(5), pages 1-21, March.
    10. Alfonso Angel Medina-Santana & Leopoldo Eduardo Cárdenas-Barrón, 2022. "Optimal Design of Hybrid Renewable Energy Systems Considering Weather Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 15(23), pages 1-28, November.
    11. Ionica Oncioiu & Anca Gabriela Petrescu & Eugenia Grecu & Marius Petrescu, 2017. "Optimizing the Renewable Energy Potential: Myth or Future Trend in Romania," Energies, MDPI, vol. 10(6), pages 1-14, May.
    12. Mariko Almeida Carneiro & Diogo Da Fonseca-Soares & Lucian Hendyo Max Pereira & Angel Firmín Ramos-Ridao, 2022. "An Approach for Water and Energy Savings in Public Buildings: A Case Study of Brazilian Rail Company," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    13. Bishnu P. Bhattarai & Kurt S. Myers & Birgitte Bak-Jensen & Sumit Paudyal, 2017. "Multi-Time Scale Control of Demand Flexibility in Smart Distribution Networks," Energies, MDPI, vol. 10(1), pages 1-18, January.
    14. Sana Iqbal & Mohammad Sarfraz & Mohammad Ayyub & Mohd Tariq & Ripon K. Chakrabortty & Michael J. Ryan & Basem Alamri, 2021. "A Comprehensive Review on Residential Demand Side Management Strategies in Smart Grid Environment," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    15. Piotr Bórawski & Aneta Bełdycka-Bórawska & Lisa Holden & Tomasz Rokicki, 2022. "The Role of Renewable Energy Sources in Electricity Production in Poland and the Background of Energy Policy of the European Union at the Beginning of the COVID-19 Crisis," Energies, MDPI, vol. 15(22), pages 1-17, November.
    16. Makhadmeh, Sharif Naser & Khader, Ahamad Tajudin & Al-Betar, Mohammed Azmi & Naim, Syibrah & Abasi, Ammar Kamal & Alyasseri, Zaid Abdi Alkareem, 2019. "Optimization methods for power scheduling problems in smart home: Survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. Ritu Kandari & Neeraj Neeraj & Alexander Micallef, 2022. "Review on Recent Strategies for Integrating Energy Storage Systems in Microgrids," Energies, MDPI, vol. 16(1), pages 1-24, December.
    18. Su, Yongxin & Zhou, Yao & Tan, Mao, 2020. "An interval optimization strategy of household multi-energy system considering tolerance degree and integrated demand response," Applied Energy, Elsevier, vol. 260(C).
    19. Yonggang Zhang & Yongwei Zhong & Yingda Gong & Lirong Zheng, 2018. "The Optimization of Visual Comfort and Energy Consumption Induced by Natural Light Based on PSO," Sustainability, MDPI, vol. 11(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengli Du & Mingchao Li & Shuai Han & Jonathan Shi & Heng Li, 2019. "Multi-Pattern Data Mining and Recognition of Primary Electric Appliances from Single Non-Intrusive Load Monitoring Data," Energies, MDPI, vol. 12(6), pages 1-20, March.
    2. Liu, Luyao & Zhao, Yi & Chang, Dongliang & Xie, Jiyang & Ma, Zhanyu & Sun, Qie & Yin, Hongyi & Wennersten, Ronald, 2018. "Prediction of short-term PV power output and uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 700-711.
    3. Andrzej Ożadowicz, 2017. "A New Concept of Active Demand Side Management for Energy Efficient Prosumer Microgrids with Smart Building Technologies," Energies, MDPI, vol. 10(11), pages 1-22, November.
    4. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    5. Muhammad Awais & Nadeem Javaid & Khursheed Aurangzeb & Syed Irtaza Haider & Zahoor Ali Khan & Danish Mahmood, 2018. "Towards Effective and Efficient Energy Management of Single Home and a Smart Community Exploiting Heuristic Optimization Algorithms with Critical Peak and Real-Time Pricing Tariffs in Smart Grids," Energies, MDPI, vol. 11(11), pages 1-30, November.
    6. Muhammad Babar Rasheed & Nadeem Javaid & Muhammad Awais & Zahoor Ali Khan & Umar Qasim & Nabil Alrajeh & Zafar Iqbal & Qaisar Javaid, 2016. "Real Time Information Based Energy Management Using Customer Preferences and Dynamic Pricing in Smart Homes," Energies, MDPI, vol. 9(7), pages 1-30, July.
    7. Schroeder, Andreas, 2011. "Modeling storage and demand management in power distribution grids," Applied Energy, Elsevier, vol. 88(12), pages 4700-4712.
    8. Nadeem Javaid & Sakeena Javaid & Wadood Abdul & Imran Ahmed & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "A Hybrid Genetic Wind Driven Heuristic Optimization Algorithm for Demand Side Management in Smart Grid," Energies, MDPI, vol. 10(3), pages 1-27, March.
    9. Houda Ghamlouch & Mitra Fouladirad & Antoine Grall, 2019. "The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties," Post-Print hal-02365402, HAL.
    10. Jung, Jaesung & Cho, Yongju & Cheng, Danling & Onen, Ahmet & Arghandeh, Reza & Dilek, Murat & Broadwater, Robert P., 2013. "Monte Carlo analysis of Plug-in Hybrid Vehicles and Distributed Energy Resource growth with residential energy storage in Michigan," Applied Energy, Elsevier, vol. 108(C), pages 218-235.
    11. Chung, Mo & Park, Hwa-Choon, 2012. "Building energy demand patterns for department stores in Korea," Applied Energy, Elsevier, vol. 90(1), pages 241-249.
    12. Sébastien Bissey & Sébastien Jacques & Jean-Charles Le Bunetel, 2017. "The Fuzzy Logic Method to Efficiently Optimize Electricity Consumption in Individual Housing," Energies, MDPI, vol. 10(11), pages 1-24, October.
    13. Christoforos Menos-Aikateriniadis & Ilias Lamprinos & Pavlos S. Georgilakis, 2022. "Particle Swarm Optimization in Residential Demand-Side Management: A Review on Scheduling and Control Algorithms for Demand Response Provision," Energies, MDPI, vol. 15(6), pages 1-26, March.
    14. Di Giorgio, Alessandro & Liberati, Francesco, 2014. "Near real time load shifting control for residential electricity prosumers under designed and market indexed pricing models," Applied Energy, Elsevier, vol. 128(C), pages 119-132.
    15. van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
    16. Croonenbroeck, Carsten & Hüttel, Silke, 2017. "Quantifying the economic efficiency impact of inaccurate renewable energy price forecasts," Energy, Elsevier, vol. 134(C), pages 767-774.
    17. Sandels, C. & Brodén, D. & Widén, J. & Nordström, L. & Andersson, E., 2016. "Modeling office building consumer load with a combined physical and behavioral approach: Simulation and validation," Applied Energy, Elsevier, vol. 162(C), pages 472-485.
    18. Hafiz Majid Hussain & Nadeem Javaid & Sohail Iqbal & Qadeer Ul Hasan & Khursheed Aurangzeb & Musaed Alhussein, 2018. "An Efficient Demand Side Management System with a New Optimized Home Energy Management Controller in Smart Grid," Energies, MDPI, vol. 11(1), pages 1-28, January.
    19. Sławomir Zator, 2021. "Power Scheduling Scheme for DSM in Smart Homes with Photovoltaic and Energy Storage," Energies, MDPI, vol. 14(24), pages 1-20, December.
    20. Bilal Hussain & Nadeem Javaid & Qadeer Ul Hasan & Sakeena Javaid & Asif Khan & Shahzad A. Malik, 2018. "An Inventive Method for Eco-Efficient Operation of Home Energy Management Systems," Energies, MDPI, vol. 11(11), pages 1-40, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:593-:d:74817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.