IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15921-d988046.html
   My bibliography  Save this article

An Approach for Water and Energy Savings in Public Buildings: A Case Study of Brazilian Rail Company

Author

Listed:
  • Mariko Almeida Carneiro

    (Brazilian Company of Urban Trains, Square Napoleao Laureano, 01, Varadouro, Joao Pessoa 58010-150, Brazil
    Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Street Dr. Roberto Frias, 4200-465 Porto, Portugal
    ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Street Dr. Roberto Frias, 4200-465 Porto, Portugal)

  • Diogo Da Fonseca-Soares

    (Brazilian Company of Urban Trains, Square Napoleao Laureano, 01, Varadouro, Joao Pessoa 58010-150, Brazil
    Department of Geographical Sciences, Federal University of Pernambuco, Avenue Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Brazil
    Civil Engineering Department, University of Granada, Campus de Fuentenueva, s/n. E.T.S Ingenieros de Caminos, Canales y Puertos, 18071 Granada, Spain)

  • Lucian Hendyo Max Pereira

    (Brazilian Company of Urban Trains, Square Napoleao Laureano, 01, Varadouro, Joao Pessoa 58010-150, Brazil)

  • Angel Firmín Ramos-Ridao

    (Civil Engineering Department, University of Granada, Campus de Fuentenueva, s/n. E.T.S Ingenieros de Caminos, Canales y Puertos, 18071 Granada, Spain)

Abstract

Water scarcity is a current problem in many parts of the planet and there is a worldwide concern about water availability to meet future water demand. In countries like Brazil, where most of the electricity is produced by hydroelectric power plants, water scarcity directly impacts energy production. The water–energy nexus is directly related and impacted by CO 2 emissions and its climate consequences, which calls to a broader approach: energy–carbon–water nexus. In this context, the Sustainable Water and Energy Consumption (SWEC) Program was developed to mitigate water and energy supply problems in a railway company in Brazil. The actions took place in four main areas: (a) users conscientization, (b) consumption diagnosis, (c) indicators for evaluating water and energy consumption, and (d) evaluation of implementing alternative cleaner water and energy sources. The per capita consumption of water and energy were reduced by 10% and 19%, respectively. Permanent results were achieved by the SWEC Program, such as the acquisition of two photovoltaic systems with a total capacity of 96.5 kWp. The investment made provided an average monthly reduction in energy consumption of 56% in 2022. This work contributed to the UN Agenda 2030 and the findings may help companies and industries, and other institutions, such as universities and schools, to improve their water and electricity consumption.

Suggested Citation

  • Mariko Almeida Carneiro & Diogo Da Fonseca-Soares & Lucian Hendyo Max Pereira & Angel Firmín Ramos-Ridao, 2022. "An Approach for Water and Energy Savings in Public Buildings: A Case Study of Brazilian Rail Company," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15921-:d:988046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15921/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15921/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Babar Rasheed & Nadeem Javaid & Ashfaq Ahmad & Mohsin Jamil & Zahoor Ali Khan & Umar Qasim & Nabil Alrajeh, 2016. "Energy Optimization in Smart Homes Using Customer Preference and Dynamic Pricing," Energies, MDPI, vol. 9(8), pages 1-25, July.
    2. Lucas Niehuns Antunes & Enedir Ghisi, 2020. "Water and energy consumption in schools: case studies in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4225-4249, June.
    3. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    4. Lee, Mengshan & Tansel, Berrin & Balbin, Maribel, 2011. "Influence of residential water use efficiency measures on household water demand: A four year longitudinal study," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 1-6.
    5. Rafael Almeida Flores & Enedir Ghisi, 2022. "Benchmarking Water Efficiency in Public School Buildings," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    6. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm, 2021. "A novel and effective passive cooling strategy for photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Lopes, Alice do Carmo Precci & Oliveira Filho, Delly & Altoe, Leandra & Carlo, Joyce Correna & Lima, Bruna Bastos, 2016. "Energy efficiency labeling program for buildings in Brazil compared to the United States' and Portugal's," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 207-219.
    8. Diogo Da Fonseca-Soares & Josicleda Domiciano Galvinicio & Sayonara Andrade Eliziário & Angel Fermin Ramos-Ridao, 2022. "A Bibliometric Analysis of the Trends and Characteristics of Railway Research," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    9. Gassner, Andreas & Lederer, Jakob & Kanitschar, Georg & Ossberger, Markus & Fellner, Johann, 2018. "Extended ecological footprint for different modes of urban public transport: The case of Vienna, Austria," Land Use Policy, Elsevier, vol. 72(C), pages 85-99.
    10. Li Ji & Zhenwei Yu & Jing Ma & Limin Jia & Fuwei Ning, 2020. "The Potential of Photovoltaics to Power the Railway System in China," Energies, MDPI, vol. 13(15), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanan Liu & Yixuan Gao & Yu Hao & Hua Liao, 2016. "The Relationship between Residential Electricity Consumption and Income: A Piecewise Linear Model with Panel Data," Energies, MDPI, vol. 9(10), pages 1-11, October.
    2. Al-Amri, Fahad & Saeed, Farooq & Mujeebu, Muhammad Abdul, 2022. "Novel dual-function racking structure for passive cooling of solar PV panels –thermal performance analysis," Renewable Energy, Elsevier, vol. 198(C), pages 100-113.
    3. Ionica Oncioiu & Anca Gabriela Petrescu & Eugenia Grecu & Marius Petrescu, 2017. "Optimizing the Renewable Energy Potential: Myth or Future Trend in Romania," Energies, MDPI, vol. 10(6), pages 1-14, May.
    4. Abdalqader Ahmad & Helena Navarro & Saikat Ghosh & Yulong Ding & Jatindra Nath Roy, 2021. "Evaluation of New PCM/PV Configurations for Electrical Energy Efficiency Improvement through Thermal Management of PV Systems," Energies, MDPI, vol. 14(14), pages 1-18, July.
    5. Liu, Liu & Niu, Jianlei & Wu, Jian-Yong, 2023. "Improving energy efficiency of photovoltaic/thermal systems by cooling with PCM nano-emulsions: An indoor experimental study," Renewable Energy, Elsevier, vol. 203(C), pages 568-582.
    6. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    7. Elminshawy, Nabil A.S. & El-Damhogi, D.G. & Ibrahim, I.A. & Elminshawy, Ahmed & Osama, Amr, 2022. "Assessment of floating photovoltaic productivity with fins-assisted passive cooling," Applied Energy, Elsevier, vol. 325(C).
    8. Ruifeng Shi & Yuqin Gao & Jin Ning & Keyi Tang & Limin Jia, 2023. "Research on Highway Self-Consistent Energy System Planning with Uncertain Wind and Photovoltaic Power Output," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    9. Thamer Alquthami & Ahmad H. Milyani & Muhammad Awais & Muhammad B. Rasheed, 2021. "An Incentive Based Dynamic Pricing in Smart Grid: A Customer’s Perspective," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    10. Nilsa Duarte da Silva Lima & Irenilza de Alencar Nääs & João Gilberto Mendes dos Reis & Raquel Baracat Tosi Rodrigues da Silva, 2020. "Classifying the Level of Energy-Environmental Efficiency Rating of Brazilian Ethanol," Energies, MDPI, vol. 13(8), pages 1-16, April.
    11. Boris Abeli Pekarou Pemi & Donatien Njomo & René Tchinda & Jean Calvin Seutche & Armel Zambou Kenfack & Mahamat Hassane Babikir & Venant Sorel Chara-Dackou, 2024. "Sectoral Assessment of the Energy, Water, Waste and Land Nexus in the Sustainability of Agricultural Products in Cameroon," Sustainability, MDPI, vol. 16(2), pages 1-29, January.
    12. Vale, A.M. & Felix, D.G. & Fortes, M.Z. & Borba, B.S.M.C. & Dias, B.H. & Santelli, B.S., 2017. "Analysis of the economic viability of a photovoltaic generation project applied to the Brazilian housing program “Minha Casa Minha Vida”," Energy Policy, Elsevier, vol. 108(C), pages 292-298.
    13. Sohani, Ali & Cornaro, Cristina & Shahverdian, Mohammad Hassan & Hoseinzadeh, Siamak & Moser, David & Nastasi, Benedetto & Sayyaadi, Hoseyn & Astiaso Garcia, Davide, 2023. "Thermography and machine learning combination for comprehensive analysis of transient response of a photovoltaic module to water cooling," Renewable Energy, Elsevier, vol. 210(C), pages 451-461.
    14. Piotr Bórawski & Aneta Bełdycka-Bórawska & Lisa Holden & Tomasz Rokicki, 2022. "The Role of Renewable Energy Sources in Electricity Production in Poland and the Background of Energy Policy of the European Union at the Beginning of the COVID-19 Crisis," Energies, MDPI, vol. 15(22), pages 1-17, November.
    15. Hiloidhari, Moonmoon & Vijay, Vandit & Banerjee, Rangan & Baruah, D.C. & Rao, Anand B., 2021. "Energy-carbon-water footprint of sugarcane bioenergy: A district-level life cycle assessment in the state of Maharashtra, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Khan, Sheher Yar & Waqas, Adeel & Kumar, Mahesh & Liu, Shuli & Shen, Yongliang & Chen, Tingsen & Shoaib, Muhammad & Khan, Muhammad Omair, 2024. "Experimental, numerical, and 4E assessment of photovoltaic module using macro-encapsulation of pure and nano phase change material: A comparative analysis," Energy, Elsevier, vol. 290(C).
    17. Yu, Yanzhe & Cheng, Jie & You, Shijun & Ye, Tianzhen & Zhang, Huan & Fan, Man & Wei, Shen & Liu, Shan, 2019. "Effect of implementing building energy efficiency labeling in China: A case study in Shanghai," Energy Policy, Elsevier, vol. 133(C).
    18. Bishnu P. Bhattarai & Kurt S. Myers & Birgitte Bak-Jensen & Sumit Paudyal, 2017. "Multi-Time Scale Control of Demand Flexibility in Smart Distribution Networks," Energies, MDPI, vol. 10(1), pages 1-18, January.
    19. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Ouyang, Xiao & Xu, Zihan & Fan, Weiguo & Wei, Hejie & Song, Weize, 2021. "Regional embodied Water-Energy-Carbon efficiency of China," Energy, Elsevier, vol. 224(C).
    20. Yonggang Zhang & Yongwei Zhong & Yingda Gong & Lirong Zheng, 2018. "The Optimization of Visual Comfort and Energy Consumption Induced by Natural Light Based on PSO," Sustainability, MDPI, vol. 11(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15921-:d:988046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.