IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i1p37-d86689.html
   My bibliography  Save this article

Multi-Time Scale Control of Demand Flexibility in Smart Distribution Networks

Author

Listed:
  • Bishnu P. Bhattarai

    (Idaho National Laboratory, Idaho Falls, ID 83415, USA)

  • Kurt S. Myers

    (Idaho National Laboratory, Idaho Falls, ID 83415, USA)

  • Birgitte Bak-Jensen

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Sumit Paudyal

    (Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA)

Abstract

This paper presents a multi-timescale control strategy to deploy electric vehicle (EV) demand flexibility for simultaneously providing power balancing, grid congestion management, and economic benefits to participating actors. First, an EV charging problem is investigated from consumer, aggregator, and distribution system operator’s perspectives. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating multi-time scale controls that work from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical residential distribution grid. The simulation results demonstrate that HCA efficiently utilizes demand flexibility stemming from EVs to solve grid unbalancing and congestions with simultaneous maximization of economic benefits to the participating actors. This is ensured by enabling EV participation in day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to five times the cost they were paying without control.

Suggested Citation

  • Bishnu P. Bhattarai & Kurt S. Myers & Birgitte Bak-Jensen & Sumit Paudyal, 2017. "Multi-Time Scale Control of Demand Flexibility in Smart Distribution Networks," Energies, MDPI, vol. 10(1), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:37-:d:86689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/37/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/37/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niels Leemput & Frederik Geth & Juan Van Roy & Pol Olivella-Rosell & Johan Driesen & Andreas Sumper, 2015. "MV and LV Residential Grid Impact of Combined Slow and Fast Charging of Electric Vehicles," Energies, MDPI, vol. 8(3), pages 1-24, March.
    2. Vijayanarasimha Hindupur Pakka & Richard Mark Rylatt, 2016. "Design and Analysis of Electrical Distribution Networks and Balancing Markets in the UK: A New Framework with Applications," Energies, MDPI, vol. 9(2), pages 1-20, February.
    3. Muhammad Babar Rasheed & Nadeem Javaid & Ashfaq Ahmad & Mohsin Jamil & Zahoor Ali Khan & Umar Qasim & Nabil Alrajeh, 2016. "Energy Optimization in Smart Homes Using Customer Preference and Dynamic Pricing," Energies, MDPI, vol. 9(8), pages 1-25, July.
    4. Monica Alonso & Hortensia Amaris & Jean Gardy Germain & Juan Manuel Galan, 2014. "Optimal Charging Scheduling of Electric Vehicles in Smart Grids by Heuristic Algorithms," Energies, MDPI, vol. 7(4), pages 1-27, April.
    5. Zhaoxi Liu & Qiuwei Wu & Arne Hejde Nielsen & Yun Wang, 2014. "Day-Ahead Energy Planning with 100% Electric Vehicle Penetration in the Nordic Region by 2050," Energies, MDPI, vol. 7(3), pages 1-17, March.
    6. Lei Zhou & Yang Li & Beibei Wang & Zhe Wang & Xiaoqing Hu, 2015. "Provision of Supplementary Load Frequency Control via Aggregation of Air Conditioning Loads," Energies, MDPI, vol. 8(12), pages 1-20, December.
    7. Ying Fan & Weixia Zhu & Zhongbing Xue & Li Zhang & Zhixiang Zou, 2015. "A Multi-Function Conversion Technique for Vehicle-to-Grid Applications," Energies, MDPI, vol. 8(8), pages 1-16, July.
    8. Sekyung Han & Soohee Han, 2013. "Economic Feasibility of V2G Frequency Regulation in Consideration of Battery Wear," Energies, MDPI, vol. 6(2), pages 1-18, February.
    9. Poria Astero & Bong Jun Choi, 2016. "Electrical Market Management Considering Power System Constraints in Smart Distribution Grids," Energies, MDPI, vol. 9(6), pages 1-30, May.
    10. Muhammad Babar Rasheed & Nadeem Javaid & Muhammad Awais & Zahoor Ali Khan & Umar Qasim & Nabil Alrajeh & Zafar Iqbal & Qaisar Javaid, 2016. "Real Time Information Based Energy Management Using Customer Preferences and Dynamic Pricing in Smart Homes," Energies, MDPI, vol. 9(7), pages 1-30, July.
    11. Pol Olivella-Rosell & Roberto Villafafila-Robles & Andreas Sumper & Joan Bergas-Jané, 2015. "Probabilistic Agent-Based Model of Electric Vehicle Charging Demand to Analyse the Impact on Distribution Networks," Energies, MDPI, vol. 8(5), pages 1-28, May.
    12. Jun Yang & Wanmeng Hao & Lei Chen & Jiejun Chen & Jing Jin & Feng Wang, 2016. "Risk Assessment of Distribution Networks Considering the Charging-Discharging Behaviors of Electric Vehicles," Energies, MDPI, vol. 9(7), pages 1-20, July.
    13. Marco E. T. Gerards & Johann L. Hurink, 2016. "Robust Peak-Shaving for a Neighborhood with Electric Vehicles," Energies, MDPI, vol. 9(8), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rongheng Lin & Fangchun Yang & Mingyuan Gao & Budan Wu & Yingying Zhao, 2019. "AUD-MTS: An Abnormal User Detection Approach Based on Power Load Multi-Step Clustering with Multiple Time Scales," Energies, MDPI, vol. 12(16), pages 1-19, August.
    2. Hadis Moradi & Mahdi Esfahanian & Amir Abtahi & Ali Zilouchian, 2017. "Modeling a Hybrid Microgrid Using Probabilistic Reconfiguration under System Uncertainties," Energies, MDPI, vol. 10(9), pages 1-17, September.
    3. Kohlhepp, Peter & Harb, Hassan & Wolisz, Henryk & Waczowicz, Simon & Müller, Dirk & Hagenmeyer, Veit, 2019. "Large-scale grid integration of residential thermal energy storages as demand-side flexibility resource: A review of international field studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 527-547.
    4. Yusuf A. Sha’aban & Augustine Ikpehai & Bamidele Adebisi & Khaled M. Rabie, 2017. "Bi-Directional Coordination of Plug-In Electric Vehicles with Economic Model Predictive Control," Energies, MDPI, vol. 10(10), pages 1-20, September.
    5. Solanke, Tirupati U. & Khatua, Pradeep K. & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tan, Kang Miao, 2021. "Control and management of a multilevel electric vehicles infrastructure integrated with distributed resources: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Jia Ning & Yi Tang & Qian Chen & Jianming Wang & Jianhua Zhou & Bingtuan Gao, 2017. "A Bi-Level Coordinated Optimization Strategy for Smart Appliances Considering Online Demand Response Potential," Energies, MDPI, vol. 10(4), pages 1-16, April.
    7. Laihyuk Park & Yongwoon Jang & Hyoungchel Bae & Juho Lee & Chang Yun Park & Sungrae Cho, 2017. "Automated Energy Scheduling Algorithms for Residential Demand Response Systems," Energies, MDPI, vol. 10(9), pages 1-17, September.
    8. S. Muhammad Bagher Sadati & Jamal Moshtagh & Miadreza Shafie-khah & João P. S. Catalão, 2017. "Risk-Based Bi-Level Model for Simultaneous Profit Maximization of a Smart Distribution Company and Electric Vehicle Parking Lot Owner," Energies, MDPI, vol. 10(11), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuttana Kongjeen & Krischonme Bhumkittipich, 2018. "Impact of Plug-in Electric Vehicles Integrated into Power Distribution System Based on Voltage-Dependent Power Flow Analysis," Energies, MDPI, vol. 11(6), pages 1-16, June.
    2. Mingchao Xia & Qingying Lai & Yajiao Zhong & Canbing Li & Hsiao-Dong Chiang, 2016. "Aggregator-Based Interactive Charging Management System for Electric Vehicle Charging," Energies, MDPI, vol. 9(3), pages 1-14, March.
    3. Weige Zhang & Di Zhang & Biqiang Mu & Le Yi Wang & Yan Bao & Jiuchun Jiang & Hugo Morais, 2017. "Decentralized Electric Vehicle Charging Strategies for Reduced Load Variation and Guaranteed Charge Completion in Regional Distribution Grids," Energies, MDPI, vol. 10(2), pages 1-19, January.
    4. Lauvergne, Rémi & Perez, Yannick & Françon, Mathilde & Tejeda De La Cruz, Alberto, 2022. "Integration of electric vehicles into transmission grids: A case study on generation adequacy in Europe in 2040," Applied Energy, Elsevier, vol. 326(C).
    5. Paul Stewart & Chris Bingham, 2016. "Electrical Power and Energy Systems for Transportation Applications," Energies, MDPI, vol. 9(7), pages 1-3, July.
    6. Zafar Iqbal & Nadeem Javaid & Syed Muhammad Mohsin & Syed Muhammad Abrar Akber & Muhammad Khalil Afzal & Farruh Ishmanov, 2018. "Performance Analysis of Hybridization of Heuristic Techniques for Residential Load Scheduling," Energies, MDPI, vol. 11(10), pages 1-31, October.
    7. Yanan Liu & Yixuan Gao & Yu Hao & Hua Liao, 2016. "The Relationship between Residential Electricity Consumption and Income: A Piecewise Linear Model with Panel Data," Energies, MDPI, vol. 9(10), pages 1-11, October.
    8. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    9. Poria Astero & Bong Jun Choi & Hao Liang & Lennart Söder, 2017. "Transactive Demand Side Management Programs in Smart Grids with High Penetration of EVs," Energies, MDPI, vol. 10(10), pages 1-18, October.
    10. Motoaki, Yutaka & Yi, Wenqi & Salisbury, Shawn, 2018. "Empirical analysis of electric vehicle fast charging under cold temperatures," Energy Policy, Elsevier, vol. 122(C), pages 162-168.
    11. Ionica Oncioiu & Anca Gabriela Petrescu & Eugenia Grecu & Marius Petrescu, 2017. "Optimizing the Renewable Energy Potential: Myth or Future Trend in Romania," Energies, MDPI, vol. 10(6), pages 1-14, May.
    12. Mariko Almeida Carneiro & Diogo Da Fonseca-Soares & Lucian Hendyo Max Pereira & Angel Firmín Ramos-Ridao, 2022. "An Approach for Water and Energy Savings in Public Buildings: A Case Study of Brazilian Rail Company," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    13. Chitchai Srithapon & Prasanta Ghosh & Apirat Siritaratiwat & Rongrit Chatthaworn, 2020. "Optimization of Electric Vehicle Charging Scheduling in Urban Village Networks Considering Energy Arbitrage and Distribution Cost," Energies, MDPI, vol. 13(2), pages 1-20, January.
    14. Zunaira Nadeem & Nadeem Javaid & Asad Waqar Malik & Sohail Iqbal, 2018. "Scheduling Appliances with GA, TLBO, FA, OSR and Their Hybrids Using Chance Constrained Optimization for Smart Homes," Energies, MDPI, vol. 11(4), pages 1-30, April.
    15. Sajjad Haider & Peter Schegner, 2020. "Heuristic Optimization of Overloading Due to Electric Vehicles in a Low Voltage Grid," Energies, MDPI, vol. 13(22), pages 1-19, November.
    16. Julia Vopava & Christian Koczwara & Anna Traupmann & Thomas Kienberger, 2019. "Investigating the Impact of E-Mobility on the Electrical Power Grid Using a Simplified Grid Modelling Approach," Energies, MDPI, vol. 13(1), pages 1-23, December.
    17. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.
    18. Mazhar Abbas & Eung-sang Kim & Seul-ki Kim & Yun-su Kim, 2016. "Comparative Analysis of Battery Behavior with Different Modes of Discharge for Optimal Capacity Sizing and BMS Operation," Energies, MDPI, vol. 9(10), pages 1-19, October.
    19. Sung-Min Cho & Jin-Su Kim & Jae-Chul Kim, 2019. "Optimal Operation Parameter Estimation of Energy Storage for Frequency Regulation," Energies, MDPI, vol. 12(9), pages 1-21, May.
    20. Viktor Slednev & Patrick Jochem & Wolf Fichtner, 2022. "Impacts of electric vehicles on the European high and extra high voltage power grid," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 824-837, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:37-:d:86689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.