IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v128y2014icp119-132.html
   My bibliography  Save this article

Near real time load shifting control for residential electricity prosumers under designed and market indexed pricing models

Author

Listed:
  • Di Giorgio, Alessandro
  • Liberati, Francesco

Abstract

This paper presents an event driven model predictive control approach for a local energy management system, enabling residential consumers to the automated participation in demand side management (DSM) programs. We consider a household equipped with smart appliances, a storage unit, electric vehicles and photovoltaic micro-generation. Resources are coordinated according to the needs of maximizing self-consumption and minimizing the cost of energy consumption, in a contractual scenario characterized by designed or market indexed pricing models, with DSM options. The control action (appliances’ start times, the storage charging profile and the IEC 61851 compliant charging profile of the electric vehicles) is updated every time an event triggers the controller, such as a user request, a price/volume signal or the notification of a new forecast of micro-generation from the photovoltaic unit. The control framework is flexible enough to meet the real dynamics of a household and short-term grid requirements, while taking into account user preferences, contractual and technical constraints. A proper set of simulations validates the proposed approach.

Suggested Citation

  • Di Giorgio, Alessandro & Liberati, Francesco, 2014. "Near real time load shifting control for residential electricity prosumers under designed and market indexed pricing models," Applied Energy, Elsevier, vol. 128(C), pages 119-132.
  • Handle: RePEc:eee:appene:v:128:y:2014:i:c:p:119-132
    DOI: 10.1016/j.apenergy.2014.04.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914003857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.04.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gaiser, Kyle & Stroeve, Pieter, 2014. "The impact of scheduling appliances and rate structure on bill savings for net-zero energy communities: Application to West Village," Applied Energy, Elsevier, vol. 113(C), pages 1586-1595.
    2. Widén, Joakim & Wäckelgård, Ewa, 2010. "A high-resolution stochastic model of domestic activity patterns and electricity demand," Applied Energy, Elsevier, vol. 87(6), pages 1880-1892, June.
    3. Rastegar, Mohammad & Fotuhi-Firuzabad, Mahmud & Aminifar, Farrokh, 2012. "Load commitment in a smart home," Applied Energy, Elsevier, vol. 96(C), pages 45-54.
    4. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    5. van Staden, Adam Jacobus & Zhang, Jiangfeng & Xia, Xiaohua, 2011. "A model predictive control strategy for load shifting in a water pumping scheme with maximum demand charges," Applied Energy, Elsevier, vol. 88(12), pages 4785-4794.
    6. Finn, P. & O’Connell, M. & Fitzpatrick, C., 2013. "Demand side management of a domestic dishwasher: Wind energy gains, financial savings and peak-time load reduction," Applied Energy, Elsevier, vol. 101(C), pages 678-685.
    7. Middelberg, Arno & Zhang, Jiangfeng & Xia, Xiaohua, 2009. "An optimal control model for load shifting - With application in the energy management of a colliery," Applied Energy, Elsevier, vol. 86(7-8), pages 1266-1273, July.
    8. Ashok, S. & Banerjee, R., 2000. "Load-management applications for the industrial sector," Applied Energy, Elsevier, vol. 66(2), pages 105-111, June.
    9. Matallanas, E. & Castillo-Cagigal, M. & Gutiérrez, A. & Monasterio-Huelin, F. & Caamaño-Martín, E. & Masa, D. & Jiménez-Leube, J., 2012. "Neural network controller for Active Demand-Side Management with PV energy in the residential sector," Applied Energy, Elsevier, vol. 91(1), pages 90-97.
    10. Ericson, Torgeir, 2011. "Households' self-selection of dynamic electricity tariffs," Applied Energy, Elsevier, vol. 88(7), pages 2541-2547, July.
    11. Carrie Armel, K. & Gupta, Abhay & Shrimali, Gireesh & Albert, Adrian, 2013. "Is disaggregation the holy grail of energy efficiency? The case of electricity," Energy Policy, Elsevier, vol. 52(C), pages 213-234.
    12. Lujano-Rojas, Juan M. & Monteiro, Cláudio & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2012. "Optimum residential load management strategy for real time pricing (RTP) demand response programs," Energy Policy, Elsevier, vol. 45(C), pages 671-679.
    13. Woo, C.K. & Li, R. & Shiu, A. & Horowitz, I., 2013. "Residential winter kWh responsiveness under optional time-varying pricing in British Columbia," Applied Energy, Elsevier, vol. 108(C), pages 288-297.
    14. Di Giorgio, Alessandro & Pimpinella, Laura, 2012. "An event driven Smart Home Controller enabling consumer economic saving and automated Demand Side Management," Applied Energy, Elsevier, vol. 96(C), pages 92-103.
    15. Zúñiga, K.V. & Castilla, I. & Aguilar, R.M., 2014. "Using fuzzy logic to model the behavior of residential electrical utility customers," Applied Energy, Elsevier, vol. 115(C), pages 384-393.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    2. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    3. Loganthurai, P. & Rajasekaran, V. & Gnanambal, K., 2016. "Evolutionary algorithm based optimum scheduling of processing units in rice industry to reduce peak demand," Energy, Elsevier, vol. 107(C), pages 419-430.
    4. Upton, J. & Murphy, M. & Shalloo, L. & Groot Koerkamp, P.W.G. & De Boer, I.J.M., 2015. "Assessing the impact of changes in the electricity price structure on dairy farm energy costs," Applied Energy, Elsevier, vol. 137(C), pages 1-8.
    5. Di Giorgio, Alessandro & Pimpinella, Laura, 2012. "An event driven Smart Home Controller enabling consumer economic saving and automated Demand Side Management," Applied Energy, Elsevier, vol. 96(C), pages 92-103.
    6. Kobus, Charlotte B.A. & Klaassen, Elke A.M. & Mugge, Ruth & Schoormans, Jan P.L., 2015. "A real-life assessment on the effect of smart appliances for shifting households’ electricity demand," Applied Energy, Elsevier, vol. 147(C), pages 335-343.
    7. Finn, P. & O’Connell, M. & Fitzpatrick, C., 2013. "Demand side management of a domestic dishwasher: Wind energy gains, financial savings and peak-time load reduction," Applied Energy, Elsevier, vol. 101(C), pages 678-685.
    8. Woo, C.K. & Li, R. & Shiu, A. & Horowitz, I., 2013. "Residential winter kWh responsiveness under optional time-varying pricing in British Columbia," Applied Energy, Elsevier, vol. 108(C), pages 288-297.
    9. Rajeev, T. & Ashok, S., 2015. "Dynamic load-shifting program based on a cloud computing framework to support the integration of renewable energy sources," Applied Energy, Elsevier, vol. 146(C), pages 141-149.
    10. Wu, Zhou & Tazvinga, Henerica & Xia, Xiaohua, 2015. "Demand side management of photovoltaic-battery hybrid system," Applied Energy, Elsevier, vol. 148(C), pages 294-304.
    11. Finn, Paddy & Fitzpatrick, Colin, 2014. "Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing," Applied Energy, Elsevier, vol. 113(C), pages 11-21.
    12. Francesco Liberati & Alessandro Di Giorgio, 2017. "Economic Model Predictive and Feedback Control of a Smart Grid Prosumer Node," Energies, MDPI, vol. 11(1), pages 1-23, December.
    13. Yan, Xing & Ozturk, Yusuf & Hu, Zechun & Song, Yonghua, 2018. "A review on price-driven residential demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 411-419.
    14. Stötzer, Martin & Hauer, Ines & Richter, Marc & Styczynski, Zbigniew A., 2015. "Potential of demand side integration to maximize use of renewable energy sources in Germany," Applied Energy, Elsevier, vol. 146(C), pages 344-352.
    15. Klaassen, E.A.M. & Kobus, C.B.A. & Frunt, J. & Slootweg, J.G., 2016. "Responsiveness of residential electricity demand to dynamic tariffs: Experiences from a large field test in the Netherlands," Applied Energy, Elsevier, vol. 183(C), pages 1065-1074.
    16. Xu, Bing & Nayak, Amar & Gray, David & Ouenniche, Jamal, 2016. "Assessing energy business cases implemented in the North Sea Region and strategy recommendations," Applied Energy, Elsevier, vol. 172(C), pages 360-371.
    17. Moreno, Blanca & García-Álvarez, María Teresa & Ramos, Carmen & Fernández-Vázquez, Esteban, 2014. "A General Maximum Entropy Econometric approach to model industrial electricity prices in Spain: A challenge for the competitiveness," Applied Energy, Elsevier, vol. 135(C), pages 815-824.
    18. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
    19. Kim, Kyungah & Choi, Jihye & Lee, Jihee & Lee, Jongsu & Kim, Junghun, 2023. "Public preferences and increasing acceptance of time-varying electricity pricing for demand side management in South Korea," Energy Economics, Elsevier, vol. 119(C).
    20. Jin, Hongyang & Li, Zhengshuo & Sun, Hongbin & Guo, Qinglai & Chen, Runze & Wang, Bin, 2017. "A robust aggregate model and the two-stage solution method to incorporate energy intensive enterprises in power system unit commitment," Applied Energy, Elsevier, vol. 206(C), pages 1364-1378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:128:y:2014:i:c:p:119-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.