IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i1p64-d87092.html
   My bibliography  Save this article

Power Consumption Analysis of Electrical Installations at Healthcare Facility

Author

Listed:
  • Emmanuel Guillen-Garcia

    (Facultad de Ingenieria, CA Mecatrónica, Universidad Autónoma de Querétaro (UAQ), Rio Moctezuma 249, 76807 San Juan del Rio, Mexico)

  • Angel L. Zorita-Lamadrid

    (Department of Electrical Engineering, Universidad de Valladolid (UVa), c/Paseo del Cauce 59, 47011 Valladolid, Spain)

  • Oscar Duque-Perez

    (Department of Electrical Engineering, Universidad de Valladolid (UVa), c/Paseo del Cauce 59, 47011 Valladolid, Spain)

  • Luis Morales-Velazquez

    (Facultad de Ingenieria, CA Mecatrónica, Universidad Autónoma de Querétaro (UAQ), Rio Moctezuma 249, 76807 San Juan del Rio, Mexico)

  • Roque Alfredo Osornio-Rios

    (Facultad de Ingenieria, CA Mecatrónica, Universidad Autónoma de Querétaro (UAQ), Rio Moctezuma 249, 76807 San Juan del Rio, Mexico)

  • Rene De Jesus Romero-Troncoso

    (Departamento de Ingenieria Electronica, DICIS, Universidad de Guanajuato (UG), Carretera Salamanca-Valle de Santiago, 36865 Salamanca, Mexico)

Abstract

This paper presents a methodology for power consumption estimation considering harmonic and interharmonic content and then it is compared to the power consumption estimation commonly done by commercial equipment based on the fundamental frequency, and how they can underestimate the power consumption considering power quality disturbances (PQD). For this purpose, data of electrical activity at the electrical distribution boards in a healthcare facility is acquired for a long time period with proprietary equipment. An analysis in the acquired current and voltage signals is done, in order to compare the power consumption centered in the fundamental frequency with the generalized definition of power consumption. The results obtained from the comparison in the power consumption estimation show differences between 4% and 10% of underestimated power consumption. Thus, it is demonstrated that the presence of harmonic and interharmonic content provokes a significant underestimation of power consumption using only the power consumption centered at the fundamental frequency.

Suggested Citation

  • Emmanuel Guillen-Garcia & Angel L. Zorita-Lamadrid & Oscar Duque-Perez & Luis Morales-Velazquez & Roque Alfredo Osornio-Rios & Rene De Jesus Romero-Troncoso, 2017. "Power Consumption Analysis of Electrical Installations at Healthcare Facility," Energies, MDPI, vol. 10(1), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:64-:d:87092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/64/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/64/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Babar Rasheed & Nadeem Javaid & Ashfaq Ahmad & Mohsin Jamil & Zahoor Ali Khan & Umar Qasim & Nabil Alrajeh, 2016. "Energy Optimization in Smart Homes Using Customer Preference and Dynamic Pricing," Energies, MDPI, vol. 9(8), pages 1-25, July.
    2. Anees, Amir & Chen, Yi-Ping Phoebe, 2016. "True real time pricing and combined power scheduling of electric appliances in residential energy management system," Applied Energy, Elsevier, vol. 165(C), pages 592-600.
    3. Sergio Ortega Alba & Mario Manana, 2016. "Energy Research in Airports: A Review," Energies, MDPI, vol. 9(5), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiaoyuan & Chen, Yu & Zhang, Mingshun & Jiang, Shan & Gou, Huayu & Pang, Zhou & Shen, Boyang, 2021. "Hospital-oriented quad-generation (HOQG)—A combined cooling, heating, power and gas (CCHPG) system," Applied Energy, Elsevier, vol. 300(C).
    2. Piotr Gnaciński & Damian Hallmann & Piotr Klimczak & Adam Muc & Marcin Pepliński, 2021. "Effects of Voltage Interharmonics on Cage Induction Motors," Energies, MDPI, vol. 14(5), pages 1-13, February.
    3. Bo Pang & Heng Nian, 2019. "Improved Operation Strategy with Alternative Control Targets for Voltage Source Converter under Harmonically Distorted Grid Considering Inter-Harmonics," Energies, MDPI, vol. 12(7), pages 1-14, March.
    4. Janusz Mindykowski & Tomasz Tarasiuk & Piotr Gnaciński, 2021. "Review of Legal Aspects of Electrical Power Quality in Ship Systems in the Wake of the Novelisation and Implementation of IACS Rules and Requirement," Energies, MDPI, vol. 14(11), pages 1-21, May.
    5. Qiang Guo & Jing Wu & Haibin Jin & Cheng Peng, 2018. "An Innovative Calibration Scheme for Interharmonic Analyzers in Power Systems under Asynchronous Sampling," Energies, MDPI, vol. 12(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanan Liu & Yixuan Gao & Yu Hao & Hua Liao, 2016. "The Relationship between Residential Electricity Consumption and Income: A Piecewise Linear Model with Panel Data," Energies, MDPI, vol. 9(10), pages 1-11, October.
    2. Enrico Mancinelli & Francesco Canestrari & Andrea Graziani & Umberto Rizza & Giorgio Passerini, 2021. "Sustainable Performances of Small to Medium-Sized Airports in the Adriatic Region," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    3. Liu, Xiaochen & Zhang, Tao & Liu, Xiaohua & Li, Lingshan & Lin, Lin & Jiang, Yi, 2021. "Energy saving potential for space heating in Chinese airport terminals: The impact of air infiltration," Energy, Elsevier, vol. 215(PB).
    4. Ionica Oncioiu & Anca Gabriela Petrescu & Eugenia Grecu & Marius Petrescu, 2017. "Optimizing the Renewable Energy Potential: Myth or Future Trend in Romania," Energies, MDPI, vol. 10(6), pages 1-14, May.
    5. Mariko Almeida Carneiro & Diogo Da Fonseca-Soares & Lucian Hendyo Max Pereira & Angel Firmín Ramos-Ridao, 2022. "An Approach for Water and Energy Savings in Public Buildings: A Case Study of Brazilian Rail Company," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    6. Cao, GangCheng & Fang, Debin & Wang, Pengyu, 2021. "The impacts of social learning on a real-time pricing scheme in the electricity market," Applied Energy, Elsevier, vol. 291(C).
    7. Song, Chunhe & Jing, Wei & Zeng, Peng & Rosenberg, Catherine, 2017. "An analysis on the energy consumption of circulating pumps of residential swimming pools for peak load management," Applied Energy, Elsevier, vol. 195(C), pages 1-12.
    8. Thamer Alquthami & Ahmad H. Milyani & Muhammad Awais & Muhammad B. Rasheed, 2021. "An Incentive Based Dynamic Pricing in Smart Grid: A Customer’s Perspective," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    9. Zhao, Xueyuan & Gao, Weijun & Qian, Fanyue & Ge, Jian, 2021. "Electricity cost comparison of dynamic pricing model based on load forecasting in home energy management system," Energy, Elsevier, vol. 229(C).
    10. Anees, Amir & Dillon, Tharam & Chen, Yi-Ping Phoebe, 2019. "A novel decision strategy for a bilateral energy contract," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Piotr Bórawski & Aneta Bełdycka-Bórawska & Lisa Holden & Tomasz Rokicki, 2022. "The Role of Renewable Energy Sources in Electricity Production in Poland and the Background of Energy Policy of the European Union at the Beginning of the COVID-19 Crisis," Energies, MDPI, vol. 15(22), pages 1-17, November.
    12. Artvin-Darien Gonzalez-Abreu & Roque-Alfredo Osornio-Rios & Arturo-Yosimar Jaen-Cuellar & Miguel Delgado-Prieto & Jose-Alfonso Antonino-Daviu & Athanasios Karlis, 2022. "Advances in Power Quality Analysis Techniques for Electrical Machines and Drives: A Review," Energies, MDPI, vol. 15(5), pages 1-26, March.
    13. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    14. Artur Kierzkowski & Tomasz Kisiel, 2021. "Simulation Model for the Estimation of Energy Consumption of the Baggage Handling System in the Landside Area of the Airport," Energies, MDPI, vol. 15(1), pages 1-11, December.
    15. Sergio Ortega Alba & Mario Manana, 2017. "Characterization and Analysis of Energy Demand Patterns in Airports," Energies, MDPI, vol. 10(1), pages 1-35, January.
    16. Bishnu P. Bhattarai & Kurt S. Myers & Birgitte Bak-Jensen & Sumit Paudyal, 2017. "Multi-Time Scale Control of Demand Flexibility in Smart Distribution Networks," Energies, MDPI, vol. 10(1), pages 1-18, January.
    17. Yonggang Zhang & Yongwei Zhong & Yingda Gong & Lirong Zheng, 2018. "The Optimization of Visual Comfort and Energy Consumption Induced by Natural Light Based on PSO," Sustainability, MDPI, vol. 11(1), pages 1-11, December.
    18. Abdellah Menou & Risto Lahdelma & Pekka Salminen, 2022. "Multicriteria Decision Aiding for Planning Renewable Power Production at Moroccan Airports," Energies, MDPI, vol. 15(14), pages 1-20, July.
    19. Lu, Yanyu & Dong, Jiankai & Liu, Jing, 2020. "Zonal modelling for thermal and energy performance of large space buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Víctor Fernando Gómez Comendador & Rosa María Arnaldo Valdés & Bernard Lisker, 2019. "A Holistic Approach to the Environmental Certification of Green Airports," Sustainability, MDPI, vol. 11(15), pages 1-38, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:64-:d:87092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.