IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924017902.html
   My bibliography  Save this article

Levenberg-Marquardt algorithm-based solar PV energy integrated internet of home energy management system

Author

Listed:
  • Rokonuzzaman, Md.
  • Rahman, Saifur
  • Hannan, M.A.
  • Mishu, Mahmuda Khatun
  • Tan, Wen-Shan
  • Rahman, Kazi Sajedur
  • Pasupuleti, Jagadeesh
  • Amin, Nowshad

Abstract

With the emergence of smart grids, the home energy management system (HEMS) has immense prospective to optimize energy usage and reduce costs in the residential sector. However, the challenges persist in effectively controlling power consumption, reducing energy expenses, enhancing resident comfort, and optimizing the coordination of renewable energy sources (RESs). In this study, a Levenberg-Marquardt (LM) algorithm-based solar PV integrated internet of home energy management system (IoHEMS) is developed. The LM algorithm has been chosen as it outperforms the other two artificial intelligence (AI) algorithms: Bayesian regularization (BR) and scaled conjugate gradient (SCG). With the setup of using 70 % of data for training, 15 % for validation, and 15 % for testing, the LM algorithm shows the regression of 0.999999, gradient of 7.8e−5, performance of 2.7133e−9, and the momentum parameter of 1e−7. When the trained data set converges to the optimal training results, the best validation performance is achieved after 1000 epochs with approximately zero mean squared error (MSE). The proposed system transforms a conventional home into a smart home by effectively managing four household appliances: Air conditioner (AC), water heater (WH), washing machine (WM), and refrigerator (ref.). The proposed model enables accurate switching functions of appliances and efficient grid-to-battery utilization, resulting in reduced peak-hour electricity tariffs. The proposed system incorporates internet of things (IoT) functionality with the HEMS, utilizing smart plug socket (SPS) and wireless sensor network (WSN) nodes. The proposed model also supports Bluetooth low energy (BLE) connectivity for offline operation. A customized android application, ‘MQTT dashboard’, allows consumers to monitor power usage, room temperature, humidity, moisture and home appliance status every 60 s intervals.

Suggested Citation

  • Rokonuzzaman, Md. & Rahman, Saifur & Hannan, M.A. & Mishu, Mahmuda Khatun & Tan, Wen-Shan & Rahman, Kazi Sajedur & Pasupuleti, Jagadeesh & Amin, Nowshad, 2025. "Levenberg-Marquardt algorithm-based solar PV energy integrated internet of home energy management system," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924017902
    DOI: 10.1016/j.apenergy.2024.124407
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924017902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tomar, Vivek & Tiwari, G.N., 2017. "Techno-economic evaluation of grid connected PV system for households with feed in tariff and time of day tariff regulation in New Delhi – A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 822-835.
    2. Tuomela, Sanna & de Castro Tomé, Mauricio & Iivari, Netta & Svento, Rauli, 2021. "Impacts of home energy management systems on electricity consumption," Applied Energy, Elsevier, vol. 299(C).
    3. Ahmad, Ashfaq & Khan, Jamil Yusuf, 2020. "Real-Time Load Scheduling, Energy Storage Control and Comfort Management for Grid-Connected Solar Integrated Smart Buildings," Applied Energy, Elsevier, vol. 259(C).
    4. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Amir Mansouri, Seyed & Jurado, Francisco, 2022. "Day-ahead scheduling of 100% isolated communities under uncertainties through a novel stochastic-robust model," Applied Energy, Elsevier, vol. 328(C).
    5. Yousefi, Mojtaba & Hajizadeh, Amin & Soltani, Mohsen N. & Hredzak, Branislav & Kianpoor, Nasrin, 2020. "Profit assessment of home energy management system for buildings with A-G energy labels," Applied Energy, Elsevier, vol. 277(C).
    6. Wu, Xiaohua & Hu, Xiaosong & Yin, Xiaofeng & Zhang, Caiping & Qian, Shide, 2017. "Optimal battery sizing of smart home via convex programming," Energy, Elsevier, vol. 140(P1), pages 444-453.
    7. Nadeem Javaid & Sakeena Javaid & Wadood Abdul & Imran Ahmed & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "A Hybrid Genetic Wind Driven Heuristic Optimization Algorithm for Demand Side Management in Smart Grid," Energies, MDPI, vol. 10(3), pages 1-27, March.
    8. Sarker, Eity & Seyedmahmoudian, Mehdi & Jamei, Elmira & Horan, Ben & Stojcevski, Alex, 2020. "Optimal management of home loads with renewable energy integration and demand response strategy," Energy, Elsevier, vol. 210(C).
    9. Kamble, Sachin S. & Gunasekaran, Angappa & Parekh, Harsh & Joshi, Sudhanshu, 2019. "Modeling the internet of things adoption barriers in food retail supply chains," Journal of Retailing and Consumer Services, Elsevier, vol. 48(C), pages 154-168.
    10. Tostado-Véliz, Marcos & Icaza-Alvarez, Daniel & Jurado, Francisco, 2021. "A novel methodology for optimal sizing photovoltaic-battery systems in smart homes considering grid outages and demand response," Renewable Energy, Elsevier, vol. 170(C), pages 884-896.
    11. Liu, Yinyan & Ma, Jin & Xing, Xinjie & Liu, Xinglu & Wang, Wei, 2022. "A home energy management system incorporating data-driven uncertainty-aware user preference," Applied Energy, Elsevier, vol. 326(C).
    12. Muhammad Babar Rasheed & Nadeem Javaid & Muhammad Awais & Zahoor Ali Khan & Umar Qasim & Nabil Alrajeh & Zafar Iqbal & Qaisar Javaid, 2016. "Real Time Information Based Energy Management Using Customer Preferences and Dynamic Pricing in Smart Homes," Energies, MDPI, vol. 9(7), pages 1-30, July.
    13. Tostado-Véliz, Marcos & Jordehi, Ahmad Rezaee & Mansouri, Seyed Amir & Jurado, Francisco, 2023. "A two-stage IGDT-stochastic model for optimal scheduling of energy communities with intelligent parking lots," Energy, Elsevier, vol. 263(PD).
    14. Qiu, Dawei & Ye, Yujian & Papadaskalopoulos, Dimitrios & Strbac, Goran, 2021. "Scalable coordinated management of peer-to-peer energy trading: A multi-cluster deep reinforcement learning approach," Applied Energy, Elsevier, vol. 292(C).
    15. Shakeri, Mohammad & Shayestegan, Mohsen & Reza, S.M. Salim & Yahya, Iskandar & Bais, Badariah & Akhtaruzzaman, Md & Sopian, Kamaruzzaman & Amin, Nowshad, 2018. "Implementation of a novel home energy management system (HEMS) architecture with solar photovoltaic system as supplementary source," Renewable Energy, Elsevier, vol. 125(C), pages 108-120.
    16. Danish Mahmood & Nadeem Javaid & Nabil Alrajeh & Zahoor Ali Khan & Umar Qasim & Imran Ahmed & Manzoor Ilahi, 2016. "Realistic Scheduling Mechanism for Smart Homes," Energies, MDPI, vol. 9(3), pages 1-28, March.
    17. Yu, Biying & Sun, Feihu & Chen, Chen & Fu, Guanpeng & Hu, Lin, 2022. "Power demand response in the context of smart home application," Energy, Elsevier, vol. 240(C).
    18. Novoa, Laura & Flores, Robert & Brouwer, Jack, 2019. "Optimal renewable generation and battery storage sizing and siting considering local transformer limits," Applied Energy, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2024. "Smart home energy management using demand response with uncertainty analysis of electric vehicle in the presence of renewable energy sources," Applied Energy, Elsevier, vol. 364(C).
    2. Khezri, Rahmat & Mahmoudi, Amin & Aki, Hirohisa, 2022. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Huang, Zhijia & Wang, Fang & Lu, Yuehong & Chen, Xiaofeng & Wu, Qiqi, 2023. "Optimization model for home energy management system of rural dwellings," Energy, Elsevier, vol. 283(C).
    4. Haider, Haider Tarish & Muhsen, Dhiaa Halboot & Al-Nidawi, Yaarob Mahjoob & Khatib, Tamer & See, Ong Hang, 2022. "A novel approach for multi-objective cost-peak optimization for demand response of a residential area in smart grids," Energy, Elsevier, vol. 254(PB).
    5. Andrzej Ożadowicz, 2017. "A New Concept of Active Demand Side Management for Energy Efficient Prosumer Microgrids with Smart Building Technologies," Energies, MDPI, vol. 10(11), pages 1-22, November.
    6. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    7. Bardeeniz, Santi & Panjapornpon, Chanin & Fongsamut, Chalermpan & Ngaotrakanwiwat, Pailin & Hussain, Mohamed Azlan, 2024. "Energy efficiency characteristics analysis for process diagnosis under anomaly using self-adaptive-based SHAP guided optimization," Energy, Elsevier, vol. 309(C).
    8. Xi Ye & Gan Li & Tong Zhu & Lei Zhang & Yanfeng Wang & Xiang Wang & Hua Zhong, 2023. "A Dispatching Method for Large-Scale Interruptible Load and Electric Vehicle Clusters to Alleviate Overload of Interface Power Flow," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    9. Sébastien Bissey & Sébastien Jacques & Jean-Charles Le Bunetel, 2017. "The Fuzzy Logic Method to Efficiently Optimize Electricity Consumption in Individual Housing," Energies, MDPI, vol. 10(11), pages 1-24, October.
    10. Christoforos Menos-Aikateriniadis & Ilias Lamprinos & Pavlos S. Georgilakis, 2022. "Particle Swarm Optimization in Residential Demand-Side Management: A Review on Scheduling and Control Algorithms for Demand Response Provision," Energies, MDPI, vol. 15(6), pages 1-26, March.
    11. Alizadeh Bidgoli, Mohsen & Ahmadian, Ali, 2022. "Multi-stage optimal scheduling of multi-microgrids using deep-learning artificial neural network and cooperative game approach," Energy, Elsevier, vol. 239(PB).
    12. Hafiz Majid Hussain & Nadeem Javaid & Sohail Iqbal & Qadeer Ul Hasan & Khursheed Aurangzeb & Musaed Alhussein, 2018. "An Efficient Demand Side Management System with a New Optimized Home Energy Management Controller in Smart Grid," Energies, MDPI, vol. 11(1), pages 1-28, January.
    13. Tostado-Véliz, Marcos & Jin, Xiaolong & Bhakar, Rohit & Jurado, Francisco, 2024. "Coordinated pricing mechanism for parking clusters considering interval-guided uncertainty-aware strategies," Applied Energy, Elsevier, vol. 355(C).
    14. Hussain, Sadam & Azim, M. Imran & Lai, Chunyan & Eicker, Ursula, 2023. "New coordination framework for smart home peer-to-peer trading to reduce impact on distribution transformer," Energy, Elsevier, vol. 284(C).
    15. Liu, Youquan & Li, Huazhen & Zhu, Jiawei & Lin, Yishuai & Lei, Weidong, 2023. "Multi-objective optimal scheduling of household appliances for demand side management using a hybrid heuristic algorithm," Energy, Elsevier, vol. 262(PA).
    16. Ahmad, Ashfaq & Khan, Jamil Yusuf, 2022. "Optimal Sizing and Management of Distributed Energy Resources in Smart Buildings," Energy, Elsevier, vol. 244(PB).
    17. Mohammed Qais & K. H. Loo & Hany M. Hasanien & Saad Alghuwainem, 2023. "Optimal Comfortable Load Schedule for Home Energy Management Including Photovoltaic and Battery Systems," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    18. Zafar Iqbal & Nadeem Javaid & Syed Muhammad Mohsin & Syed Muhammad Abrar Akber & Muhammad Khalil Afzal & Farruh Ishmanov, 2018. "Performance Analysis of Hybridization of Heuristic Techniques for Residential Load Scheduling," Energies, MDPI, vol. 11(10), pages 1-31, October.
    19. Lazaroiu, Alexandra Catalina & Roscia, Mariacristina & Dancu, Vasile Sebastian & Balaban, Georgiana, 2024. "Social impact of decarbonization objectives through smart homes: Survey and analysis," Renewable Energy, Elsevier, vol. 230(C).
    20. Priom Mahmud & Sanjoy Kumar Paul & Abdullahil Azeem & Priyabrata Chowdhury, 2021. "Evaluating Supply Chain Collaboration Barriers in Small- and Medium-Sized Enterprises," Sustainability, MDPI, vol. 13(13), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924017902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.