IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i7p542-d73928.html
   My bibliography  Save this article

Real Time Information Based Energy Management Using Customer Preferences and Dynamic Pricing in Smart Homes

Author

Listed:
  • Muhammad Babar Rasheed

    (COMSATS Institute of Information Technology, Islamabad 44000, Pakistan)

  • Nadeem Javaid

    (COMSATS Institute of Information Technology, Islamabad 44000, Pakistan)

  • Muhammad Awais

    (Department of Technology, The University of Lahore, Lahore 54000, Pakistan)

  • Zahoor Ali Khan

    (Internetworking Program, Faculty of Engineering, Dalhousie University, Halifax, NS B3J 4R2, Canada)

  • Umar Qasim

    (Cameron Library, University of Alberta, Edmonton, AB T6G 2J8, Canada)

  • Nabil Alrajeh

    (Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh 11633, Saudi Arabia)

  • Zafar Iqbal

    (University Institute of Information Technology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46000, Pakistan)

  • Qaisar Javaid

    (Department of Computer Science & Software Engineering, International Islamic University, Islamabad 44000, Pakistan)

Abstract

This paper presents real time information based energy management algorithms to reduce electricity cost and peak to average ratio (PAR) while preserving user comfort in a smart home. We categorize household appliances into thermostatically controlled ( tc ), user aware ( ua ), elastic ( el ), inelastic ( iel ) and regular ( r ) appliances/loads. An optimization problem is formulated to reduce electricity cost by determining the optimal use of household appliances. The operational schedules of these appliances are optimized in response to the electricity price signals and customer preferences to maximize electricity cost saving and user comfort while minimizing curtailed energy. Mathematical optimization models of tc appliances, i.e., air-conditioner and refrigerator, are proposed which are solved by using intelligent programmable communication thermostat ( iPCT). We add extra intelligence to conventional programmable communication thermostat (CPCT) by using genetic algorithm (GA) to control tc appliances under comfort constraints. The optimization models for ua , el , and iel appliances are solved subject to electricity cost minimization and PAR reduction. Considering user comfort, el appliances are considered where users can adjust appliance waiting time to increase or decrease their comfort level. Furthermore, energy demand of r appliances is fulfilled via local supply where the major objective is to reduce the fuel cost of various generators by proper scheduling. Simulation results show that the proposed algorithms efficiently schedule the energy demand of all types of appliances by considering identified constraints (i.e., PAR, variable prices, temperature, capacity limit and waiting time).

Suggested Citation

  • Muhammad Babar Rasheed & Nadeem Javaid & Muhammad Awais & Zahoor Ali Khan & Umar Qasim & Nabil Alrajeh & Zafar Iqbal & Qaisar Javaid, 2016. "Real Time Information Based Energy Management Using Customer Preferences and Dynamic Pricing in Smart Homes," Energies, MDPI, vol. 9(7), pages 1-30, July.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:542-:d:73928
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/7/542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/7/542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Danish Mahmood & Nadeem Javaid & Nabil Alrajeh & Zahoor Ali Khan & Umar Qasim & Imran Ahmed & Manzoor Ilahi, 2016. "Realistic Scheduling Mechanism for Smart Homes," Energies, MDPI, vol. 9(3), pages 1-28, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hafiz Majid Hussain & Nadeem Javaid & Sohail Iqbal & Qadeer Ul Hasan & Khursheed Aurangzeb & Musaed Alhussein, 2018. "An Efficient Demand Side Management System with a New Optimized Home Energy Management Controller in Smart Grid," Energies, MDPI, vol. 11(1), pages 1-28, January.
    2. Zafar Iqbal & Nadeem Javaid & Syed Muhammad Mohsin & Syed Muhammad Abrar Akber & Muhammad Khalil Afzal & Farruh Ishmanov, 2018. "Performance Analysis of Hybridization of Heuristic Techniques for Residential Load Scheduling," Energies, MDPI, vol. 11(10), pages 1-31, October.
    3. Ghulam Hafeez & Nadeem Javaid & Sohail Iqbal & Farman Ali Khan, 2018. "Optimal Residential Load Scheduling Under Utility and Rooftop Photovoltaic Units," Energies, MDPI, vol. 11(3), pages 1-27, March.
    4. Dan Dobrotă & Ionela Rotaru & Florin Adrian Nicolescu & Mădălina Marin, 2019. "Improving the Sustainability of the Manufacturing Process by Constructively Optimizing the Parts “Transition Type Fitting”," Sustainability, MDPI, vol. 11(19), pages 1-18, October.
    5. Shaterabadi, Mohammad & Jirdehi, Mehdi Ahmadi & Amiri, Nima & Omidi, Sina, 2020. "Enhancement the economical and environmental aspects of plus-zero energy buildings integrated with INVELOX turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1355-1367.
    6. Bishnu P. Bhattarai & Kurt S. Myers & Birgitte Bak-Jensen & Sumit Paudyal, 2017. "Multi-Time Scale Control of Demand Flexibility in Smart Distribution Networks," Energies, MDPI, vol. 10(1), pages 1-18, January.
    7. Ch Anwar ul Hassan & Jawaid Iqbal & Nasir Ayub & Saddam Hussain & Roobaea Alroobaea & Syed Sajid Ullah, 2022. "Smart Grid Energy Optimization and Scheduling Appliances Priority for Residential Buildings through Meta-Heuristic Hybrid Approaches," Energies, MDPI, vol. 15(5), pages 1-19, February.
    8. Zunaira Nadeem & Nadeem Javaid & Asad Waqar Malik & Sohail Iqbal, 2018. "Scheduling Appliances with GA, TLBO, FA, OSR and Their Hybrids Using Chance Constrained Optimization for Smart Homes," Energies, MDPI, vol. 11(4), pages 1-30, April.
    9. Nadeem Javaid & Sardar Mehboob Hussain & Ibrar Ullah & Muhammad Asim Noor & Wadood Abdul & Ahmad Almogren & Atif Alamri, 2017. "Demand Side Management in Nearly Zero Energy Buildings Using Heuristic Optimizations," Energies, MDPI, vol. 10(8), pages 1-29, August.
    10. Andrzej Ożadowicz, 2017. "A New Concept of Active Demand Side Management for Energy Efficient Prosumer Microgrids with Smart Building Technologies," Energies, MDPI, vol. 10(11), pages 1-22, November.
    11. Sébastien Bissey & Sébastien Jacques & Jean-Charles Le Bunetel, 2017. "The Fuzzy Logic Method to Efficiently Optimize Electricity Consumption in Individual Housing," Energies, MDPI, vol. 10(11), pages 1-24, October.
    12. Iulia Stamatescu & Nicoleta Arghira & Ioana Făgărăşan & Grigore Stamatescu & Sergiu Stelian Iliescu & Vasile Calofir, 2017. "Decision Support System for a Low Voltage Renewable Energy System," Energies, MDPI, vol. 10(1), pages 1-15, January.
    13. Halhoul Merabet, Ghezlane & Essaaidi, Mohamed & Ben Haddou, Mohamed & Qolomany, Basheer & Qadir, Junaid & Anan, Muhammad & Al-Fuqaha, Ala & Abid, Mohamed Riduan & Benhaddou, Driss, 2021. "Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengli Du & Mingchao Li & Shuai Han & Jonathan Shi & Heng Li, 2019. "Multi-Pattern Data Mining and Recognition of Primary Electric Appliances from Single Non-Intrusive Load Monitoring Data," Energies, MDPI, vol. 12(6), pages 1-20, March.
    2. Andrzej Ożadowicz, 2017. "A New Concept of Active Demand Side Management for Energy Efficient Prosumer Microgrids with Smart Building Technologies," Energies, MDPI, vol. 10(11), pages 1-22, November.
    3. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    4. Muhammad Awais & Nadeem Javaid & Khursheed Aurangzeb & Syed Irtaza Haider & Zahoor Ali Khan & Danish Mahmood, 2018. "Towards Effective and Efficient Energy Management of Single Home and a Smart Community Exploiting Heuristic Optimization Algorithms with Critical Peak and Real-Time Pricing Tariffs in Smart Grids," Energies, MDPI, vol. 11(11), pages 1-30, November.
    5. Nadeem Javaid & Sakeena Javaid & Wadood Abdul & Imran Ahmed & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "A Hybrid Genetic Wind Driven Heuristic Optimization Algorithm for Demand Side Management in Smart Grid," Energies, MDPI, vol. 10(3), pages 1-27, March.
    6. Sébastien Bissey & Sébastien Jacques & Jean-Charles Le Bunetel, 2017. "The Fuzzy Logic Method to Efficiently Optimize Electricity Consumption in Individual Housing," Energies, MDPI, vol. 10(11), pages 1-24, October.
    7. Christoforos Menos-Aikateriniadis & Ilias Lamprinos & Pavlos S. Georgilakis, 2022. "Particle Swarm Optimization in Residential Demand-Side Management: A Review on Scheduling and Control Algorithms for Demand Response Provision," Energies, MDPI, vol. 15(6), pages 1-26, March.
    8. Hafiz Majid Hussain & Nadeem Javaid & Sohail Iqbal & Qadeer Ul Hasan & Khursheed Aurangzeb & Musaed Alhussein, 2018. "An Efficient Demand Side Management System with a New Optimized Home Energy Management Controller in Smart Grid," Energies, MDPI, vol. 11(1), pages 1-28, January.
    9. Sławomir Zator, 2021. "Power Scheduling Scheme for DSM in Smart Homes with Photovoltaic and Energy Storage," Energies, MDPI, vol. 14(24), pages 1-20, December.
    10. Bilal Hussain & Nadeem Javaid & Qadeer Ul Hasan & Sakeena Javaid & Asif Khan & Shahzad A. Malik, 2018. "An Inventive Method for Eco-Efficient Operation of Home Energy Management Systems," Energies, MDPI, vol. 11(11), pages 1-40, November.
    11. Danish Mahmood & Nadeem Javaid & Sheraz Ahmed & Imran Ahmed & Iftikhar Azim Niaz & Wadood Abdul & Sanaa Ghouzali, 2017. "Orchestrating an Effective Formulation to Investigate the Impact of EMSs (Energy Management Systems) for Residential Units Prior to Installation," Energies, MDPI, vol. 10(3), pages 1-25, March.
    12. Muhammad Babar Rasheed & Nadeem Javaid & Ashfaq Ahmad & Mohsin Jamil & Zahoor Ali Khan & Umar Qasim & Nabil Alrajeh, 2016. "Energy Optimization in Smart Homes Using Customer Preference and Dynamic Pricing," Energies, MDPI, vol. 9(8), pages 1-25, July.
    13. Zafar Iqbal & Nadeem Javaid & Syed Muhammad Mohsin & Syed Muhammad Abrar Akber & Muhammad Khalil Afzal & Farruh Ishmanov, 2018. "Performance Analysis of Hybridization of Heuristic Techniques for Residential Load Scheduling," Energies, MDPI, vol. 11(10), pages 1-31, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:542-:d:73928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.