IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224023430.html
   My bibliography  Save this article

Enhancing diesel engine efficiency and emission performance through oxygenated and non-oxygenated additives: A comparative study of alcohol and cycloalkane impacts on diesel-biodiesel blends

Author

Listed:
  • Deviren, Halis

Abstract

This study evaluates the impact of renewable fuel additives on diesel engine performance, combustion, and emissions. Safflower seed oil was converted into biodiesel (BD) through transesterification, achieving a 94.12 % conversion yield, verified by spectroscopic analysis. Test fuels were prepared by adding 5 %, 15 %, and 25 % n-pentanol (PE, oxygenated) and cyclohexane (CHx, non-oxygenated) to diesel fuel (DF) and BD. These blends were tested in a single-cylinder diesel engine under varying loads. At maximum load, BSFC values were 0.251 for DF, 0.333 for 25 % PE, and 0.269 kg/kWh for 25 % CHx. BTE values were 32.184 % for DF, 27.028 % for 25 % PE, and 31.147 % for 25 % CHx. The peak in-cylinder pressure and net heat release for the 25 % PE blend, which were the highest among the test fuels, were 58.148 bar and 37.010 J/°CA, respectively. Average NOx emissions were 171 for DF, 135.75 for 25 % PE, and 170.50 ppm for 25 % CHx. CO emissions were 171 for DF, 149.25 for 25 % PE, and 170.25 ppm for 25 % CHx. Smoke opacity values were 0.75 for DF, 0.308 for 25 % PE, and 0.675 m-1 for 25 % CHx. Despite higher costs, CHx offers reduced environmental impact without significantly compromising engine performance.

Suggested Citation

  • Deviren, Halis, 2024. "Enhancing diesel engine efficiency and emission performance through oxygenated and non-oxygenated additives: A comparative study of alcohol and cycloalkane impacts on diesel-biodiesel blends," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023430
    DOI: 10.1016/j.energy.2024.132569
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224023430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yilmaz, Nadir & Sanchez, Tomas M., 2012. "Analysis of operating a diesel engine on biodiesel-ethanol and biodiesel-methanol blends," Energy, Elsevier, vol. 46(1), pages 126-129.
    2. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    3. rahimi, Hadi & Ghobadian, Barat & Yusaf, Talal & Najafi, Gholamhasan & Khatamifar, Mahdi, 2009. "Diesterol: An environment-friendly IC engine fuel," Renewable Energy, Elsevier, vol. 34(1), pages 335-342.
    4. P. McCarthy & M.G. Rasul & S. Moazzem, 2011. "Comparison of the performance and emissions of different biodiesel blends against petroleum diesel," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 6(4), pages 255-260, May.
    5. Sam Ki Yoon & Min Soo Kim & Han Joo Kim & Nag Jung Choi, 2014. "Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine," Energies, MDPI, vol. 7(12), pages 1-18, December.
    6. Ooi, Jong Boon & Kau, Chia Chuin & Manoharan, Dilrukshan Naveen & Wang, Xin & Tran, Manh-Vu & Hung, Yew Mun, 2023. "Effects of multi-walled carbon nanotubes on the combustion, performance, and emission characteristics of a single-cylinder diesel engine fueled with palm-oil biodiesel-diesel blend," Energy, Elsevier, vol. 281(C).
    7. Agarwal, Deepak & Kumar, Lokesh & Agarwal, Avinash Kumar, 2008. "Performance evaluation of a vegetable oil fuelled compression ignition engine," Renewable Energy, Elsevier, vol. 33(6), pages 1147-1156.
    8. Wei, L. & Cheung, C.S. & Ning, Z., 2018. "Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine," Energy, Elsevier, vol. 155(C), pages 957-970.
    9. Hazar, Hanbey & Telceken, Tugay & Sevinc, Huseyin, 2022. "An experimental study on emission of a diesel engine fuelled with SME (safflower methyl ester) and diesel fuel," Energy, Elsevier, vol. 241(C).
    10. Jatoth, Ramachander & Gugulothu, Santhosh Kumar & Ravi kiran Sastry, G., 2021. "Experimental study of using biodiesel and low cetane alcohol as the pilot fuel on the performance and emission trade-off study in the diesel/compressed natural gas dual fuel combustion mode," Energy, Elsevier, vol. 225(C).
    11. Tse, H. & Leung, C.W. & Cheung, C.S., 2015. "Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends," Energy, Elsevier, vol. 83(C), pages 343-350.
    12. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan, 2019. "Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends," Energy, Elsevier, vol. 174(C), pages 386-406.
    13. Ashok, B. & Nanthagopal, K. & Darla, Sivaprasad & Chyuan, Ong Hwai & Ramesh, A. & Jacob, Ashwin & Sahil, G. & Thiyagarajan, S. & Geo, V. Edwin, 2019. "Comparative assessment of hexanol and decanol as oxygenated additives with calophyllum inophyllum biodiesel," Energy, Elsevier, vol. 173(C), pages 494-510.
    14. Abdulelah Aljaafari & I. M. R. Fattah & M. I. Jahirul & Yuantong Gu & T. M. I. Mahlia & Md. Ariful Islam & Mohammad S. Islam, 2022. "Biodiesel Emissions: A State-of-the-Art Review on Health and Environmental Impacts," Energies, MDPI, vol. 15(18), pages 1-24, September.
    15. Deb, Madhujit & Paul, Abhishek & Debroy, Durbadal & Sastry, G.R.K. & Panua, Raj Sekhar & Bose, P.K., 2015. "An experimental investigation of performance-emission trade off characteristics of a CI engine using hydrogen as dual fuel," Energy, Elsevier, vol. 85(C), pages 569-585.
    16. Giakoumis, Evangelos G., 2018. "Analysis of 22 vegetable oils’ physico-chemical properties and fatty acid composition on a statistical basis, and correlation with the degree of unsaturation," Renewable Energy, Elsevier, vol. 126(C), pages 403-419.
    17. Rajak, Upendra & Nashine, Prerana & Verma, Tikendra Nath, 2019. "Characteristics of microalgae spirulina biodiesel with the impact of n-butanol addition on a CI engine," Energy, Elsevier, vol. 189(C).
    18. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Giakoumis, Evangelos G. & Dimaratos, Athanasios M., 2012. "Characteristics of performance and emissions in high-speed direct injection diesel engine fueled with diethyl ether/diesel fuel blends," Energy, Elsevier, vol. 43(1), pages 214-224.
    19. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2012. "Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine," Applied Energy, Elsevier, vol. 91(1), pages 166-172.
    20. Ashok, B. & Jeevanantham, A.K. & Nanthagopal, K. & Saravanan, B. & Senthil Kumar, M. & Johny, Ajith & Mohan, Aravind & Kaisan, Muhammad Usman & Abubakar, Shitu, 2019. "An experimental analysis on the effect of n-pentanol- Calophyllum Inophyllum Biodiesel binary blends in CI engine characteristcis," Energy, Elsevier, vol. 173(C), pages 290-305.
    21. Abedin, M.J. & Imran, A. & Masjuki, H.H. & Kalam, M.A. & Shahir, S.A. & Varman, M. & Ruhul, A.M., 2016. "An overview on comparative engine performance and emission characteristics of different techniques involved in diesel engine as dual-fuel engine operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 306-316.
    22. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    23. Li, Li & Wang, Jianxin & Wang, Zhi & Liu, Haoye, 2015. "Combustion and emissions of compression ignition in a direct injection diesel engine fueled with pentanol," Energy, Elsevier, vol. 80(C), pages 575-581.
    24. Wei, Lijiang & Cheng, Rupeng & Mao, Hongjun & Geng, Peng & Zhang, Yanjie & You, Kun, 2018. "Combustion process and NOx emissions of a marine auxiliary diesel engine fuelled with waste cooking oil biodiesel blends," Energy, Elsevier, vol. 144(C), pages 73-80.
    25. Dwivedi, Gaurav & Sharma, M.P., 2014. "Impact of cold flow properties of biodiesel on engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 650-656.
    26. Ghadikolaei, Meisam Ahmadi & Cheung, Chun Shun & Yung, Ka-Fu, 2018. "Study of combustion, performance and emissions of diesel engine fueled with diesel/biodiesel/alcohol blends having the same oxygen concentration," Energy, Elsevier, vol. 157(C), pages 258-269.
    27. Atmanli, Alpaslan & Ileri, Erol & Yilmaz, Nadir, 2016. "Optimization of diesel–butanol–vegetable oil blend ratios based on engine operating parameters," Energy, Elsevier, vol. 96(C), pages 569-580.
    28. Kumar, A. Naresh & Kishore, P.S. & Raju, K. Brahma & Ashok, B. & Vignesh, R. & Jeevanantham, A.K. & Nanthagopal, K. & Tamilvanan, A., 2020. "Decanol proportional effect prediction model as additive in palm biodiesel using ANN and RSM technique for diesel engine," Energy, Elsevier, vol. 213(C).
    29. Venu, Harish & Veza, Ibham & Selvam, Lokesh & Appavu, Prabhu & Raju, V. Dhana & Subramani, Lingesan & Nair, Jayashri N., 2022. "Analysis of particle size diameter (PSD), mass fraction burnt (MFB) and particulate number (PN) emissions in a diesel engine powered by diesel/biodiesel/n-amyl alcohol blends," Energy, Elsevier, vol. 250(C).
    30. Chaitanya, A.V. Krishna & Mohanty, Dillip Kumar, 2022. "Experimental investigation on the combustion, performance and emission characteristics of 1-pentanol blended waste plastic oil in a CRDI engine with EGR," Energy, Elsevier, vol. 256(C).
    31. Jamuwa, D.K. & Sharma, D. & Soni, S.L., 2017. "Experimental investigation of performance, exhaust emission and combustion parameters of compression ignition engine with varying ethanol energy fractions," Energy, Elsevier, vol. 127(C), pages 544-557.
    32. Datta, Ambarish & Mandal, Bijan Kumar, 2017. "Engine performance, combustion and emission characteristics of a compression ignition engine operating on different biodiesel-alcohol blends," Energy, Elsevier, vol. 125(C), pages 470-483.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    3. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    4. Nadir Yilmaz & Alpaslan Atmanli & Matthew J. Hall & Francisco M. Vigil, 2022. "Determination of the Optimum Blend Ratio of Diesel, Waste Oil Derived Biodiesel and 1-Pentanol Using the Response Surface Method," Energies, MDPI, vol. 15(14), pages 1-16, July.
    5. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    6. Upendra Rajak & Abhishek Dasore & Prem Kumar Chaurasiya & Tikendra Nath Verma & Prerana Nashine & Anil Kumar, 2023. "Effects of microalgae -ethanol-methanol-diesel blends on the spray characteristics and emissions of a diesel engine," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 1-22, January.
    7. Liang, Zhirong & Yu, Zhenhong & Liu, Haoye & Chen, Longfei & Huang, Xinyan, 2022. "Combustion and emission characteristics of a compression ignition engine burning a wide range of conventional hydrocarbon and alternative fuels," Energy, Elsevier, vol. 250(C).
    8. Mao, Dongxu & Ghadikolaei, Meisam Ahmadi & Cheung, Chun Shun & Shen, Zhaojie & Cui, Wenzheng & Wong, Pak Kin, 2020. "Influence of alternative fuels on the particulate matter micro and nano-structures, volatility and oxidation reactivity in a compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    9. EL-Seesy, Ahmed I. & He, Zhixia & Kosaka, Hidenori, 2021. "Combustion and emission characteristics of a common rail diesel engine run with n-heptanol-methyl oleate mixtures," Energy, Elsevier, vol. 214(C).
    10. M, Vinod Babu & K, Madhu Murthy & G, Amba Prasad Rao, 2017. "Butanol and pentanol: The promising biofuels for CI engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1068-1088.
    11. Mukhtar, M.N.A. & Hagos, Ftwi Y. & Noor, M.M. & Mamat, Rizalman & Abdullah, A. Adam & Abd Aziz, Abd Rashid, 2019. "Tri-fuel emulsion with secondary atomization attributes for greener diesel engine – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 490-506.
    12. Kumar, A. Naresh & Kishore, P.S. & Raju, K. Brahma & Ashok, B. & Vignesh, R. & Jeevanantham, A.K. & Nanthagopal, K. & Tamilvanan, A., 2020. "Decanol proportional effect prediction model as additive in palm biodiesel using ANN and RSM technique for diesel engine," Energy, Elsevier, vol. 213(C).
    13. Rafael R. Maes & Geert Potters & Erik Fransen & Rowan Van Schaeren & Silvia Lenaerts, 2022. "Influence of Adding Low Concentration of Oxygenates in Mineral Diesel Oil and Biodiesel on the Concentration of NO, NO 2 and Particulate Matter in the Exhaust Gas of a One-Cylinder Diesel Generator," IJERPH, MDPI, vol. 19(13), pages 1-18, June.
    14. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    15. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    16. Venu, Harish & Veza, Ibham & Selvam, Lokesh & Appavu, Prabhu & Raju, V. Dhana & Subramani, Lingesan & Nair, Jayashri N., 2022. "Analysis of particle size diameter (PSD), mass fraction burnt (MFB) and particulate number (PN) emissions in a diesel engine powered by diesel/biodiesel/n-amyl alcohol blends," Energy, Elsevier, vol. 250(C).
    17. Rajesh Kumar, B. & Saravanan, S. & Rana, D. & Nagendran, A., 2016. "Use of some advanced biofuels for overcoming smoke/NOx trade-off in a light-duty DI diesel engine," Renewable Energy, Elsevier, vol. 96(PA), pages 687-699.
    18. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Guirong Wu & Jun Cong Ge & Nag Jung Choi, 2021. "Effect of Ethanol Additives on Combustion and Emissions of a Diesel Engine Fueled by Palm Oil Biodiesel at Idling Speed," Energies, MDPI, vol. 14(5), pages 1-12, March.
    20. Han, Kai & Lin, Qizhao & Liu, Minghou & Meng, Kesheng & Ni, Zhanshi & Liu, Yu & Tian, Junjian & Qiu, Zhicong, 2022. "Experimental study on the micro-explosion characteristics of biodiesel/1-pentanol and biodiesel/ methanol blended droplets," Renewable Energy, Elsevier, vol. 196(C), pages 261-277.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.