IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6093-d1536057.html
   My bibliography  Save this article

The Conversion of Ethanol to Syngas by Partial Oxidation in a Non-Premixed Moving Bed Reactor

Author

Listed:
  • Sergei Dorofeenko

    (Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Academician Semenov Avenue, 142432 Chernogolovka, Russia)

  • Dmitry Podlesniy

    (Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Academician Semenov Avenue, 142432 Chernogolovka, Russia)

  • Eugene Polianczyk

    (Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Academician Semenov Avenue, 142432 Chernogolovka, Russia)

  • Marina Salganskaya

    (Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Academician Semenov Avenue, 142432 Chernogolovka, Russia)

  • Maxim Tsvetkov

    (Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Academician Semenov Avenue, 142432 Chernogolovka, Russia)

  • Leonid Yanovsky

    (Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Academician Semenov Avenue, 142432 Chernogolovka, Russia
    Kutateladze Institute of Thermophysics SB RAS, 1 Academician Lavrentiev Avenue, 630090 Novosibirsk, Russia)

  • Andrey Zaichenko

    (Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Academician Semenov Avenue, 142432 Chernogolovka, Russia)

Abstract

An experimental investigation into the conversion of ethanol to syngas by partial oxidation in a non-premixed counterflow moving bed filtration combustion reactor was carried out. Regimes of conversion depending on the mass flow rates of fuel and air (separate feeding), as well as a granular solid heat carrier, were studied. Depending on the mass flow rate of the heat carrier, two combustion modes were realized—reaction trailing and intermediate—with different temperature patterns in the gas preheating, combustion, and cooling zones along the reactor. The product gas composition is far from the predictions of the equilibrium model; it contains substation fractions of methane and ethylene. Combustion temperature and conversion are limited by the relatively high level of heat loss from the laboratory-scale reactor. The effect of the heat loss can be reduced by enhancing the absolute flow rate of the reactants.

Suggested Citation

  • Sergei Dorofeenko & Dmitry Podlesniy & Eugene Polianczyk & Marina Salganskaya & Maxim Tsvetkov & Leonid Yanovsky & Andrey Zaichenko, 2024. "The Conversion of Ethanol to Syngas by Partial Oxidation in a Non-Premixed Moving Bed Reactor," Energies, MDPI, vol. 17(23), pages 1-10, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6093-:d:1536057
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdul Mujeebu, Muhammad, 2016. "Hydrogen and syngas production by superadiabatic combustion – A review," Applied Energy, Elsevier, vol. 173(C), pages 210-224.
    2. Iren A. Makaryan & Eugene A. Salgansky & Vladimir S. Arutyunov & Igor V. Sedov, 2023. "Non-Catalytic Partial Oxidation of Hydrocarbon Gases to Syngas and Hydrogen: A Systematic Review," Energies, MDPI, vol. 16(6), pages 1-23, March.
    3. Xu, Xinhai & Li, Peiwen & Shen, Yuesong, 2013. "Small-scale reforming of diesel and jet fuels to make hydrogen and syngas for fuel cells: A review," Applied Energy, Elsevier, vol. 108(C), pages 202-217.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    2. Terracciano, Anthony Carmine & Vasu, Subith S. & Orlovskaya, Nina, 2016. "Design and development of a porous heterogeneous combustor for efficient heat production by combustion of liquid and gaseous fuels," Applied Energy, Elsevier, vol. 179(C), pages 228-236.
    3. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    4. Samsun, Remzi Can & Pasel, Joachim & Janßen, Holger & Lehnert, Werner & Peters, Ralf & Stolten, Detlef, 2014. "Design and test of a 5kWe high-temperature polymer electrolyte fuel cell system operated with diesel and kerosene," Applied Energy, Elsevier, vol. 114(C), pages 238-249.
    5. Walluk, Mark R. & Lin, Jiefeng & Waller, Michael G. & Smith, Daniel F. & Trabold, Thomas A., 2014. "Diesel auto-thermal reforming for solid oxide fuel cell systems: Anode off-gas recycle simulation," Applied Energy, Elsevier, vol. 130(C), pages 94-102.
    6. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    7. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    8. Pan, Zehua & Shen, Jian & Wang, Jingyi & Xu, Xinhai & Chan, Wei Ping & Liu, Siyu & Zhou, Yexin & Yan, Zilin & Jiao, Zhenjun & Lim, Teik-Thye & Zhong, Zheng, 2022. "Thermodynamic analyses of a standalone diesel-fueled distributed power generation system based on solid oxide fuel cells," Applied Energy, Elsevier, vol. 308(C).
    9. Samsun, Remzi Can & Prawitz, Matthias & Tschauder, Andreas & Pasel, Joachim & Pfeifer, Peter & Peters, Ralf & Stolten, Detlef, 2018. "An integrated diesel fuel processing system with thermal start-up for fuel cells," Applied Energy, Elsevier, vol. 226(C), pages 145-159.
    10. Alessandra Di Nardo & Marcella Calabrese & Virginia Venezia & Maria Portarapillo & Maria Turco & Almerinda Di Benedetto & Giuseppina Luciani, 2023. "Addressing Environmental Challenges: The Role of Hydrogen Technologies in a Sustainable Future," Energies, MDPI, vol. 16(23), pages 1-29, December.
    11. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    12. Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    13. Jang, Won-Jun & Jeong, Dae-Woon & Shim, Jae-Oh & Kim, Hak-Min & Roh, Hyun-Seog & Son, In Hyuk & Lee, Seung Jae, 2016. "Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application," Applied Energy, Elsevier, vol. 173(C), pages 80-91.
    14. D.F. Chuahy, Flavio & Kokjohn, Sage L., 2017. "Effects of reformed fuel composition in “single” fuel reactivity controlled compression ignition combustion," Applied Energy, Elsevier, vol. 208(C), pages 1-11.
    15. Pasel, Joachim & Samsun, Remzi Can & Tschauder, Andreas & Peters, Ralf & Stolten, Detlef, 2015. "A novel reactor type for autothermal reforming of diesel fuel and kerosene," Applied Energy, Elsevier, vol. 150(C), pages 176-184.
    16. Wang, Tiejun & Yang, Yong & Ding, Mingyue & Liu, Qiying & Ma, Longlong, 2013. "Auto-thermal reforming of biomass raw fuel gas to syngas in a novel reformer: Promotion of hot-electron," Applied Energy, Elsevier, vol. 112(C), pages 448-453.
    17. Gennadii Golub & Nataliya Tsyvenkova & Savelii Kukharets & Anna Holubenko & Ivan Omarov & Oleksandra Klymenko & Krzysztof Mudryk & Taras Hutsol, 2023. "European Green Deal: An Experimental Study of the Biomass Filtration Combustion in a Downdraft Gasifier," Energies, MDPI, vol. 16(22), pages 1-15, November.
    18. Shraavya Rao & Babul Prasad & Yang Han & W.S. Winston Ho, 2023. "Polymeric Membranes for H 2 S and CO 2 Removal from Natural Gas for Hydrogen Production: A Review," Energies, MDPI, vol. 16(15), pages 1-37, July.
    19. Xu, F.J. & Yuan, F.G. & Hu, J.Z. & Qiu, Y.P., 2014. "Miniature horizontal axis wind turbine system for multipurpose application," Energy, Elsevier, vol. 75(C), pages 216-224.
    20. Meng Yue & Mao-Zhao Xie & Jun-Rui Shi & Hong-Sheng Liu & Zhong-Shan Chen & Ya-Chao Chang, 2020. "Numerical and Experimental Investigations on Combustion Characteristics of Premixed Lean Methane–Air in a Staggered Arrangement Burner with Discrete Cylinders," Energies, MDPI, vol. 13(23), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6093-:d:1536057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.