IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2841-d1411768.html
   My bibliography  Save this article

A Dynamic Tanks-in-Series Model for a High-Temperature PEM Fuel Cell

Author

Listed:
  • Valery A. Danilov

    (Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany)

  • Gunther Kolb

    (Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany)

  • Carsten Cremers

    (Fraunhofer Institute for Chemical Technology ICT, 76327 Pfinztal, Germany)

Abstract

A dynamic tanks-in-series model has been developed for the coupled heat, mass, and charge transfer processes in a high-temperature proton exchange membrane fuel cell. The semi-empirical model includes the heat and mass balance equations in the gas channels and the membrane electrode assembly together with the charge balance at the electrode/membrane interfaces. The outputs of the tanks-in-series model are the concentration, the temperature, and the current density with a step change from tank to tank. The dynamic non-isothermal model is capable of predicting both the transient and steady-state behavior of the fuel cell and reproducing impedance data under harmonic perturbations of the cell potential together with a comprehensive interpretation of experimental data.

Suggested Citation

  • Valery A. Danilov & Gunther Kolb & Carsten Cremers, 2024. "A Dynamic Tanks-in-Series Model for a High-Temperature PEM Fuel Cell," Energies, MDPI, vol. 17(12), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2841-:d:1411768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2841/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2841/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Danilov, Valery & De Schepper, Peter & Denayer, Joeri, 2015. "A TSR model for direct propane fuel cell with equilibrium adsorption and desorption processes," Renewable Energy, Elsevier, vol. 83(C), pages 1084-1096.
    2. Samsun, Remzi Can & Pasel, Joachim & Janßen, Holger & Lehnert, Werner & Peters, Ralf & Stolten, Detlef, 2014. "Design and test of a 5kWe high-temperature polymer electrolyte fuel cell system operated with diesel and kerosene," Applied Energy, Elsevier, vol. 114(C), pages 238-249.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    2. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    3. Thomas, Sobi & Vang, Jakob Rabjerg & Araya, Samuel Simon & Kær, Søren Knudsen, 2017. "Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions," Applied Energy, Elsevier, vol. 192(C), pages 422-436.
    4. Chen, Zhijie & Zuo, Wei & Zhou, Kun & Li, Qingqing & Huang, Yuhan & E, Jiaqiang, 2023. "Multi-factor impact mechanism on the performance of high temperature proton exchange membrane fuel cell," Energy, Elsevier, vol. 278(PB).
    5. Ruiyu Li & Yun Cai & Yilin Liu & Ziqi Xie & Klaus Wippermann & Werner Lehnert, 2023. "The Potential Effect on the Performance of CrN/Cr-Coated SS316L Bipolar Plates and Their Durability in Simulated Cathodic HT-PEFC Environments," Energies, MDPI, vol. 16(22), pages 1-11, November.
    6. Li, Yan & Shi, Yan & Mehio, Nada & Tan, Mingsheng & Wang, Zhiyong & Hu, Xiaohong & Chen, George Z. & Dai, Sheng & Jin, Xianbo, 2016. "More sustainable electricity generation in hot and dry fuel cells with a novel hybrid membrane of Nafion/nano-silica/hydroxyl ionic liquid," Applied Energy, Elsevier, vol. 175(C), pages 451-458.
    7. Samsun, Remzi Can & Prawitz, Matthias & Tschauder, Andreas & Pasel, Joachim & Pfeifer, Peter & Peters, Ralf & Stolten, Detlef, 2018. "An integrated diesel fuel processing system with thermal start-up for fuel cells," Applied Energy, Elsevier, vol. 226(C), pages 145-159.
    8. Krekel, Daniel & Samsun, Remzi Can & Pasel, Joachim & Prawitz, Matthias & Peters, Ralf & Stolten, Detlef, 2016. "Operating strategies for fuel processing systems with a focus on water–gas shift reactor stability," Applied Energy, Elsevier, vol. 164(C), pages 540-552.
    9. Pasel, Joachim & Samsun, Remzi Can & Tschauder, Andreas & Peters, Ralf & Stolten, Detlef, 2015. "A novel reactor type for autothermal reforming of diesel fuel and kerosene," Applied Energy, Elsevier, vol. 150(C), pages 176-184.
    10. Purnima, P. & Jayanti, S., 2017. "Water neutrality and waste heat management in ethanol reformer - HTPEMFC integrated system for on-board hydrogen generation," Applied Energy, Elsevier, vol. 199(C), pages 169-179.
    11. Di Marcoberardino, G. & Chiarabaglio, L. & Manzolini, G. & Campanari, S., 2019. "A Techno-economic comparison of micro-cogeneration systems based on polymer electrolyte membrane fuel cell for residential applications," Applied Energy, Elsevier, vol. 239(C), pages 692-705.
    12. Singdeo, Debanand & Dey, Tapobrata & Gaikwad, Shrihari & Andreasen, Søren Juhl & Ghosh, Prakash C., 2017. "A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell," Applied Energy, Elsevier, vol. 195(C), pages 13-22.
    13. Authayanun, Suthida & Saebea, Dang & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai, 2015. "Evaluation of an integrated methane autothermal reforming and high-temperature proton exchange membrane fuel cell system," Energy, Elsevier, vol. 80(C), pages 331-339.
    14. Han, Gwangwoo & Lee, Sangho & Bae, Joongmyeon, 2015. "Diesel autothermal reforming with hydrogen peroxide for low-oxygen environments," Applied Energy, Elsevier, vol. 156(C), pages 99-106.
    15. Pasel, Joachim & Samsun, Remzi Can & Tschauder, Andreas & Peters, Ralf & Stolten, Detlef, 2017. "Advances in autothermal reformer design," Applied Energy, Elsevier, vol. 198(C), pages 88-98.
    16. De las Heras, A. & Vivas, F.J. & Segura, F. & Redondo, M.J. & Andújar, J.M., 2018. "Air-cooled fuel cells: Keys to design and build the oxidant/cooling system," Renewable Energy, Elsevier, vol. 125(C), pages 1-20.
    17. Wu, Qixing & Li, Haiyang & Yuan, Wenxiang & Luo, Zhongkuan & Wang, Fang & Sun, Hongyuan & Zhao, Xuxin & Fu, Huide, 2015. "Performance evaluation of an air-breathing high-temperature proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 160(C), pages 146-152.
    18. Samsun, Remzi Can & Prawitz, Matthias & Tschauder, Andreas & Meißner, Jan & Pasel, Joachim & Peters, Ralf, 2020. "Reforming of diesel and jet fuel for fuel cells on a systems level: Steady-state and transient operation," Applied Energy, Elsevier, vol. 279(C).
    19. Pregelj, Boštjan & Vrečko, Darko & Petrovčič, Janko & Jovan, Vladimir & Dolanc, Gregor, 2015. "A model-based approach to battery selection for truck onboard fuel cell-based APU in an anti-idling application," Applied Energy, Elsevier, vol. 137(C), pages 64-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2841-:d:1411768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.