IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3303-d1117964.html
   My bibliography  Save this article

Induction Motor Bearing Fault Diagnosis Based on Singular Value Decomposition of the Stator Current

Author

Listed:
  • Yuriy Zhukovskiy

    (Educational Research Center for Digital Technologies, Saint Petersburg Mining University, 191106 St. Petersburg, Russia)

  • Aleksandra Buldysko

    (Educational Research Center for Digital Technologies, Saint Petersburg Mining University, 191106 St. Petersburg, Russia)

  • Ilia Revin

    (National Center for Cognitive Research, ITMO University, 197101 St. Petersburg, Russia)

Abstract

Among the most widespread systems in industrial plants are automated drive systems, the key and most common element of which is the induction motor. In view of challenging operating conditions of equipment, the task of fault detection based on the analysis of electrical parameters is relevant. The authors propose the identification of patterns characterizing the occurrence and development of the bearing defect by the singular analysis method as applied to the stator current signature. As a result of the decomposition, the time series of the three-phase current are represented by singular triples ordered by decreasing contribution, which are reconstructed into the form of time series for subsequent analysis using a Hankelization of matrices. Experimental studies with bearing damage imitation made it possible to establish the relationship between the changes in the contribution of the reconstructed time series and the presence of different levels of bearing defects. By using the contribution level and tracking the movement of the specific time series, it became possible to observe both the appearance of new components in the current signal and the changes in the contribution of the components corresponding to the defect to the overall structure. The authors verified the clustering results based on a visual assessment of the component matrices’ structure similarity using scattergrams and hierarchical clustering. The reconstruction of the time series from the results of the component grouping allows the use of these components for the subsequent prediction of faults development in electric motors.

Suggested Citation

  • Yuriy Zhukovskiy & Aleksandra Buldysko & Ilia Revin, 2023. "Induction Motor Bearing Fault Diagnosis Based on Singular Value Decomposition of the Stator Current," Energies, MDPI, vol. 16(8), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3303-:d:1117964
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barabady, Javad & Kumar, Uday, 2008. "Reliability analysis of mining equipment: A case study of a crushing plant at Jajarm Bauxite Mine in Iran," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 647-653.
    2. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    3. Hadi Ashraf Raja & Karolina Kudelina & Bilal Asad & Toomas Vaimann & Ants Kallaste & Anton Rassõlkin & Huynh Van Khang, 2022. "Signal Spectrum-Based Machine Learning Approach for Fault Prediction and Maintenance of Electrical Machines," Energies, MDPI, vol. 15(24), pages 1-16, December.
    4. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    5. Golyandina, Nina & Korobeynikov, Anton, 2014. "Basic Singular Spectrum Analysis and forecasting with R," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 934-954.
    6. Denis Anatolievich Ustinov & Ershat Rashitovich Shafhatov, 2022. "Assessment of Reliability Indicators of Combined Systems of Offshore Wind Turbines and Wave Energy Converters," Energies, MDPI, vol. 15(24), pages 1-20, December.
    7. Zhang, Shuo & Hu, Xiaosong & Xie, Shaobo & Song, Ziyou & Hu, Lin & Hou, Cong, 2019. "Adaptively coordinated optimization of battery aging and energy management in plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 256(C).
    8. Huaqing Wang & Ruitong Li & Gang Tang & Hongfang Yuan & Qingliang Zhao & Xi Cao, 2014. "A Compound Fault Diagnosis for Rolling Bearings Method Based on Blind Source Separation and Ensemble Empirical Mode Decomposition," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-13, October.
    9. Xie, Shaobo & Hu, Xiaosong & Qi, Shanwei & Tang, Xiaolin & Lang, Kun & Xin, Zongke & Brighton, James, 2019. "Model predictive energy management for plug-in hybrid electric vehicles considering optimal battery depth of discharge," Energy, Elsevier, vol. 173(C), pages 667-678.
    10. Zhang Zhongya & Jin Xiaoguang, 2018. "Prediction of Peak Velocity of Blasting Vibration Based on Artificial Neural Network Optimized by Dimensionality Reduction of FA-MIV," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-12, May.
    11. Nikolay Korolev & Anatoly Kozyaruk & Valentin Morenov, 2021. "Efficiency Increase of Energy Systems in Oil and Gas Industry by Evaluation of Electric Drive Lifecycle," Energies, MDPI, vol. 14(19), pages 1-15, September.
    12. Mikhail Dvoynikov & Dmitry Sidorov & Evgeniy Kambulov & Frederick Rose & Rustem Ahiyarov, 2022. "Salt Deposits and Brine Blowout: Development of a Cross-Linking Composition for Blocking Formations and Methodology for Its Testing," Energies, MDPI, vol. 15(19), pages 1-20, October.
    13. Yuri Merizalde & Luis Hernández-Callejo & Oscar Duque-Perez, 2017. "State of the Art and Trends in the Monitoring, Detection and Diagnosis of Failures in Electric Induction Motors," Energies, MDPI, vol. 10(7), pages 1-34, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Bazghandi & Mohammad Hoseintabar Marzebali & Vahid Abolghasemi & Shahin Hedayati Kia, 2023. "A Novel Mode Un-Mixing Approach in Variational Mode Decomposition for Fault Detection in Wound Rotor Induction Machines," Energies, MDPI, vol. 16(14), pages 1-17, July.
    2. Tatyana Kukharova & Alexander Martirosyan & Mir-Amal Asadulagi & Yury Ilyushin, 2024. "Development of the Separation Column’s Temperature Field Monitoring System," Energies, MDPI, vol. 17(20), pages 1-23, October.
    3. Boris V. Malozyomov & Nikita V. Martyushev & Nikita V. Babyr & Alexander V. Pogrebnoy & Egor A. Efremenkov & Denis V. Valuev & Aleksandr E. Boltrushevich, 2024. "Modelling of Reliability Indicators of a Mining Plant," Mathematics, MDPI, vol. 12(18), pages 1-25, September.
    4. Pavel V. Shishkin & Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2024. "Mathematical Logic Model for Analysing the Controllability of Mining Equipment," Mathematics, MDPI, vol. 12(11), pages 1-20, May.
    5. Pavel V. Shishkin & Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2024. "Development of a Mathematical Model of Operation Reliability of Mine Hoisting Plants," Mathematics, MDPI, vol. 12(12), pages 1-26, June.
    6. Natalia Koteleva & Nikolai Korolev, 2024. "A Diagnostic Curve for Online Fault Detection in AC Drives," Energies, MDPI, vol. 17(5), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
    2. Tejas-Dilipsing Patil & Emmanuel Vinot & Simone Ehrenberger & Rochdi Trigui & Eduardo Redondo-Iglesias, 2023. "Sensitivity Analysis of Battery Aging for Model-Based PHEV Use Scenarios," Energies, MDPI, vol. 16(4), pages 1-17, February.
    3. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    4. Lin, Tianliang & Lin, Yuanzheng & Ren, Haoling & Chen, Haibin & Chen, Qihuai & Li, Zhongshen, 2020. "Development and key technologies of pure electric construction machinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Yuriy Zhukovskiy & Anastasia Koshenkova & Valeriya Vorobeva & Daniil Rasputin & Roman Pozdnyakov, 2023. "Assessment of the Impact of Technological Development and Scenario Forecasting of the Sustainable Development of the Fuel and Energy Complex," Energies, MDPI, vol. 16(7), pages 1-23, March.
    6. Constantinos A. Balaras & Andreas I. Theodoropoulos & Elena G. Dascalaki, 2023. "Geographic Information Systems for Facilitating Audits of the Urban Built Environment," Energies, MDPI, vol. 16(11), pages 1-26, May.
    7. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    8. Ciurea Iulia-Cristina, 2024. "The Impact of the EU AI Act on the UN Sustainable Development Goals for 2030 – A Text Analysis," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 2857-2870.
    9. Yuyang Gao & Chao Qu & Kequan Zhang, 2016. "A Hybrid Method Based on Singular Spectrum Analysis, Firefly Algorithm, and BP Neural Network for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 9(10), pages 1-28, September.
    10. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    11. A. J. Jin & C. Li & J. Su & J. Tan, 2022. "Fundamental Studies of Smart Distributed Energy Resources along with Energy Blockchain," Energies, MDPI, vol. 15(21), pages 1-12, October.
    12. Xie, Shaobo & Qi, Shanwei & Lang, Kun & Tang, Xiaolin & Lin, Xianke, 2020. "Coordinated management of connected plug-in hybrid electric buses for energy saving, inter-vehicle safety, and battery health," Applied Energy, Elsevier, vol. 268(C).
    13. Karlson Hargroves & Benjamin James & Joshua Lane & Peter Newman, 2023. "The Role of Distributed Energy Resources and Associated Business Models in the Decentralised Energy Transition: A Review," Energies, MDPI, vol. 16(10), pages 1-15, May.
    14. Alvaro Furlani Bastos & Surya Santoso, 2021. "Optimization Techniques for Mining Power Quality Data and Processing Unbalanced Datasets in Machine Learning Applications," Energies, MDPI, vol. 14(2), pages 1-21, January.
    15. Yang, Jibin & Xu, Xiaohui & Peng, Yiqiang & Zhang, Jiye & Song, Pengyun, 2019. "Modeling and optimal energy management strategy for a catenary-battery-ultracapacitor based hybrid tramway," Energy, Elsevier, vol. 183(C), pages 1123-1135.
    16. Aman Kalteh, 2016. "Improving Forecasting Accuracy of Streamflow Time Series Using Least Squares Support Vector Machine Coupled with Data-Preprocessing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 747-766, January.
    17. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    18. Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
    19. Barabadi, Abbas & Barabady, Javad & Markeset, Tore, 2014. "Application of reliability models with covariates in spare part prediction and optimization – A case study," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 1-7.
    20. Zhang, Wei & Wang, Jixin & Liu, Yong & Gao, Guangzong & Liang, Siwen & Ma, Hongfeng, 2020. "Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery," Applied Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3303-:d:1117964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.