IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p463-d481633.html
   My bibliography  Save this article

Optimization Techniques for Mining Power Quality Data and Processing Unbalanced Datasets in Machine Learning Applications

Author

Listed:
  • Alvaro Furlani Bastos

    (Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA)

  • Surya Santoso

    (Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA)

Abstract

In recent years, machine learning applications have received increasing interest from power system researchers. The successful performance of these applications is dependent on the availability of extensive and diverse datasets for the training and validation of machine learning frameworks. However, power systems operate at quasi-steady-state conditions for most of the time, and the measurements corresponding to these states provide limited novel knowledge for the development of machine learning applications. In this paper, a data mining approach based on optimization techniques is proposed for filtering root-mean-square (RMS) voltage profiles and identifying unusual measurements within triggerless power quality datasets. Then, datasets with equal representation between event and non-event observations are created so that machine learning algorithms can extract useful insights from the rare but important event observations. The proposed framework is demonstrated and validated with both synthetic signals and field data measurements.

Suggested Citation

  • Alvaro Furlani Bastos & Surya Santoso, 2021. "Optimization Techniques for Mining Power Quality Data and Processing Unbalanced Datasets in Machine Learning Applications," Energies, MDPI, vol. 14(2), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:463-:d:481633
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/463/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. María Pérez-Ortiz & Silvia Jiménez-Fernández & Pedro A. Gutiérrez & Enrique Alexandre & César Hervás-Martínez & Sancho Salcedo-Sanz, 2016. "A Review of Classification Problems and Algorithms in Renewable Energy Applications," Energies, MDPI, vol. 9(8), pages 1-27, August.
    2. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    3. Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tek-Tjing Lie, 2021. "Editorial to the Special Issue “AI Applications to Power Systems”," Energies, MDPI, vol. 14(18), pages 1-3, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolfram Rozas & Rafael Pastor-Vargas & Angel Miguel García-Vico & José Carpio, 2023. "Consumption–Production Profile Categorization in Energy Communities," Energies, MDPI, vol. 16(19), pages 1-27, October.
    2. Carlos Ruiz & Carlos M. Alaíz & José R. Dorronsoro, 2020. "Multitask Support Vector Regression for Solar and Wind Energy Prediction," Energies, MDPI, vol. 13(23), pages 1-21, November.
    3. Ciurea Iulia-Cristina, 2024. "The Impact of the EU AI Act on the UN Sustainable Development Goals for 2030 – A Text Analysis," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 2857-2870.
    4. Prince Waqas Khan & Yung-Cheol Byun & Sang-Joon Lee & Dong-Ho Kang & Jin-Young Kang & Hae-Su Park, 2020. "Machine Learning-Based Approach to Predict Energy Consumption of Renewable and Nonrenewable Power Sources," Energies, MDPI, vol. 13(18), pages 1-16, September.
    5. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    6. A. J. Jin & C. Li & J. Su & J. Tan, 2022. "Fundamental Studies of Smart Distributed Energy Resources along with Energy Blockchain," Energies, MDPI, vol. 15(21), pages 1-12, October.
    7. Li, Chen & Kies, Alexander & Zhou, Kai & Schlott, Markus & Sayed, Omar El & Bilousova, Mariia & Stöcker, Horst, 2024. "Optimal Power Flow in a highly renewable power system based on attention neural networks," Applied Energy, Elsevier, vol. 359(C).
    8. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    9. Vasallo, Manuel Jesús & Cojocaru, Emilian Gelu & Gegúndez, Manuel Emilio & Marín, Diego, 2021. "Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1130-1149.
    10. Karlson Hargroves & Benjamin James & Joshua Lane & Peter Newman, 2023. "The Role of Distributed Energy Resources and Associated Business Models in the Decentralised Energy Transition: A Review," Energies, MDPI, vol. 16(10), pages 1-15, May.
    11. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    12. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. Alessandro Bosisio & Matteo Moncecchi & Andrea Morotti & Marco Merlo, 2021. "Machine Learning and GIS Approach for Electrical Load Assessment to Increase Distribution Networks Resilience," Energies, MDPI, vol. 14(14), pages 1-23, July.
    14. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    15. Hao Wang & Chen Peng & Bolin Liao & Xinwei Cao & Shuai Li, 2023. "Wind Power Forecasting Based on WaveNet and Multitask Learning," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    16. Guilherme Henrique Alves & Geraldo Caixeta Guimarães & Fabricio Augusto Matheus Moura, 2023. "Battery Storage Systems Control Strategies with Intelligent Algorithms in Microgrids with Dynamic Pricing," Energies, MDPI, vol. 16(14), pages 1-30, July.
    17. Khalfan Al Kharusi & Abdelsalam El Haffar & Mostefa Mesbah, 2022. "Fault Detection and Classification in Transmission Lines Connected to Inverter-Based Generators Using Machine Learning," Energies, MDPI, vol. 15(15), pages 1-23, July.
    18. Robert Basmadjian & Amirhossein Shaafieyoun, 2023. "Assessing ARIMA-Based Forecasts for the Percentage of Renewables in Germany: Insights and Lessons for the Future," Energies, MDPI, vol. 16(16), pages 1-19, August.
    19. Wang, Bo & Wang, Jianda & Dong, Kangyin & Nepal, Rabindra, 2024. "How does artificial intelligence affect high-quality energy development? Achieving a clean energy transition society," Energy Policy, Elsevier, vol. 186(C).
    20. Merel Noorman & Brenda Espinosa Apráez & Saskia Lavrijssen, 2023. "AI and Energy Justice," Energies, MDPI, vol. 16(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:463-:d:481633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.