IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p1056-d105430.html
   My bibliography  Save this article

State of the Art and Trends in the Monitoring, Detection and Diagnosis of Failures in Electric Induction Motors

Author

Listed:
  • Yuri Merizalde

    (PhD School of University of Valladolid (UVA), Faculty of Chemical Engineering, University of Guayaquil, Clemente Ballen 2709 and Ismael Perez Pazmiño, Guayaquil 593, Ecuador)

  • Luis Hernández-Callejo

    (Department of Agricultural Engineering and Forestry, University of Valladolid (UVA), Campus Universitario Duques de Soria, 42004 Soria, Spain)

  • Oscar Duque-Perez

    (Department of Electrical Engineering, University of Valladolid (UVA), Escuela de Ingenierías Industriales, Paseo del Cauce 59, 47011 Valladolid, Spain)

Abstract

Despite the complex mathematical models and physical phenomena on which it is based, the simplicity of its construction, its affordability, the versatility of its applications and the relative ease of its control have made the electric induction motor an essential element in a considerable number of processes at the industrial and domestic levels, in which it converts electrical energy into mechanical energy. The importance of this type of machine for the continuity of operation, mainly in industry, is such that, in addition to being an important part of the study programs of careers related to this branch of electrical engineering, a large number of investigations into monitoring, detecting and quickly diagnosing its incipient faults due to a variety of factors have been conducted. This bibliographic research aims to analyze the conceptual aspects of the first discoveries that served as the basis for the invention of the induction motor, ranging from the development of the Fourier series, the Fourier transform mathematical formula in its different forms and the measurement, treatment and analysis of signals to techniques based on artificial intelligence and soft computing. This research also includes topics of interest such as fault types and their classification according to the engine, software and hardware parts used and modern approaches or maintenance strategies.

Suggested Citation

  • Yuri Merizalde & Luis Hernández-Callejo & Oscar Duque-Perez, 2017. "State of the Art and Trends in the Monitoring, Detection and Diagnosis of Failures in Electric Induction Motors," Energies, MDPI, vol. 10(7), pages 1-34, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1056-:d:105430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/1056/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/1056/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camila Paes Salomon & Wilson Cesar Sant’Ana & Germano Lambert-Torres & Luiz Eduardo Borges da Silva & Erik Leandro Bonaldi & Levy Ely de Lacerda De Oliveira, 2018. "Comparison among Methods for Induction Motor Low-Intrusive Efficiency Evaluation Including a New AGT Approach with a Modified Stator Resistance," Energies, MDPI, vol. 11(4), pages 1-21, March.
    2. Yuriy Zhukovskiy & Aleksandra Buldysko & Ilia Revin, 2023. "Induction Motor Bearing Fault Diagnosis Based on Singular Value Decomposition of the Stator Current," Energies, MDPI, vol. 16(8), pages 1-23, April.
    3. Zabdur Rehman & Kwanjae Seong, 2018. "Three-D Numerical Thermal Analysis of Electric Motor with Cooling Jacket," Energies, MDPI, vol. 11(1), pages 1-15, January.
    4. Martin Kuchar & Petr Palacky & Petr Simonik & Jan Strossa, 2021. "Self-Tuning Observer for Sensor Fault-Tolerant Control of Induction Motor Drive," Energies, MDPI, vol. 14(9), pages 1-16, April.
    5. Camila Paes Salomon & Claudio Ferreira & Wilson Cesar Sant’Ana & Germano Lambert-Torres & Luiz Eduardo Borges da Silva & Erik Leandro Bonaldi & Levy Ely de Lacerda de Oliveira & Bruno Silva Torres, 2019. "A Study of Fault Diagnosis Based on Electrical Signature Analysis for Synchronous Generators Predictive Maintenance in Bulk Electric Systems," Energies, MDPI, vol. 12(8), pages 1-16, April.
    6. Muhammad Zuhaib & Faraz Ahmed Shaikh & Wajiha Tanweer & Abdullah M. Alnajim & Saleh Alyahya & Sheroz Khan & Muhammad Usman & Muhammad Islam & Mohammad Kamrul Hasan, 2022. "Faults Feature Extraction Using Discrete Wavelet Transform and Artificial Neural Network for Induction Motor Availability Monitoring—Internet of Things Enabled Environment," Energies, MDPI, vol. 15(21), pages 1-32, October.
    7. Arkadiusz Duda & Maciej Sułowicz, 2020. "A New Effective Method of Induction Machine Condition Assessment Based on Zero-Sequence Voltage (ZSV) Symptoms," Energies, MDPI, vol. 13(14), pages 1-26, July.
    8. Sebastian Berhausen & Tomasz Jarek, 2021. "Method of Limiting Shaft Voltages in AC Electric Machines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    9. Mitja Nemec & Vanja Ambrožič & Rastko Fišer & David Nedeljković & Klemen Drobnič, 2019. "Induction Motor Broken Rotor Bar Detection Based on Rotor Flux Angle Monitoring," Energies, MDPI, vol. 12(5), pages 1-17, February.
    10. Piotr Kołodziejek & Daniel Wachowiak, 2022. "Fast Real-Time RDFT- and GDFT-Based Direct Fault Diagnosis of Induction Motor Drive," Energies, MDPI, vol. 15(3), pages 1-14, February.
    11. Andre S. Barcelos & Antonio J. Marques Cardoso, 2021. "Current-Based Bearing Fault Diagnosis Using Deep Learning Algorithms," Energies, MDPI, vol. 14(9), pages 1-14, April.
    12. Mateusz Dybkowski & Szymon Antoni Bednarz, 2019. "Modified Rotor Flux Estimators for Stator-Fault-Tolerant Vector Controlled Induction Motor Drives," Energies, MDPI, vol. 12(17), pages 1-21, August.
    13. Yatai Ji & Paolo Giangrande & Vincenzo Madonna & Weiduo Zhao & Michael Galea, 2021. "Reliability-Oriented Design of Inverter-Fed Low-Voltage Electrical Machines: Potential Solutions," Energies, MDPI, vol. 14(14), pages 1-25, July.
    14. Angel Arranz-Gimon & Angel Zorita-Lamadrid & Daniel Morinigo-Sotelo & Oscar Duque-Perez, 2021. "A Review of Total Harmonic Distortion Factors for the Measurement of Harmonic and Interharmonic Pollution in Modern Power Systems," Energies, MDPI, vol. 14(20), pages 1-38, October.
    15. Claudio Rossi & Yasser Gritli & Alessio Pilati & Gabriele Rizzoli & Angelo Tani & Domenico Casadei, 2020. "High Resistance Fault-Detection and Fault-Tolerance for Asymmetrical Six-Phase Surface-Mounted AC Permanent Magnet Synchronous Motor Drives," Energies, MDPI, vol. 13(12), pages 1-18, June.
    16. Arkadiusz Duda & Piotr Drozdowski, 2020. "Induction Motor Fault Diagnosis Based on Zero-Sequence Current Analysis," Energies, MDPI, vol. 13(24), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1056-:d:105430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.