IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i18p2842-d1477094.html
   My bibliography  Save this article

Modelling of Reliability Indicators of a Mining Plant

Author

Listed:
  • Boris V. Malozyomov

    (Department of Electrotechnical Complexes, Novosibirsk State Technical University, 630073 Novosibirsk, Russia)

  • Nikita V. Martyushev

    (Department of Information Technology, Tomsk Polytechnic University, 634050 Tomsk, Russia)

  • Nikita V. Babyr

    (Department of Scientometric Analysis, Empress Catherine II Saint-Petersburg Mining University, 199106 Saint-Petersburg, Russia)

  • Alexander V. Pogrebnoy

    (Department of Information Technology, Tomsk Polytechnic University, 634050 Tomsk, Russia)

  • Egor A. Efremenkov

    (Department of Mechanical Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia)

  • Denis V. Valuev

    (Yurga Technological Institute (Branch), Tomsk Polytechnic University, 652055 Yurga, Russia)

  • Aleksandr E. Boltrushevich

    (Department of Advanced Technologies, Tomsk Polytechnic University, 634050 Tomsk, Russia)

Abstract

The evaluation and prediction of reliability and testability of mining machinery and equipment are crucial, as advancements in mining technology have increased the importance of ensuring the safety of both the technological process and human life. This study focuses on developing a reliability model to analyze the controllability of mining equipment. The model, which examines the reliability of a mine cargo-passenger hoist, utilizes statistical methods to assess failures and diagnostic controlled parameters. It is represented as a transition graph and is supported by a system of equations. This model enables the estimation of the reliability of equipment components and the equipment as a whole through a diagnostic system designed for monitoring and controlling mining equipment. A mathematical and logical model is proposed to calculate availability and downtime coefficients for different structures within the mining equipment system. This analysis considers the probability of failure-free operation of the lifting unit based on the structural scheme, with additional redundancy for elements with lower reliability. The availability factor of the equipment for monitoring and controlling the mine hoisting plant is studied for various placements of diagnostic systems. Additionally, a logistic concept is introduced for organizing preventive maintenance systems and reducing equipment recovery time by optimizing spare parts, integrating them into strategies aimed at enhancing the reliability of mine hoisting plants.

Suggested Citation

  • Boris V. Malozyomov & Nikita V. Martyushev & Nikita V. Babyr & Alexander V. Pogrebnoy & Egor A. Efremenkov & Denis V. Valuev & Aleksandr E. Boltrushevich, 2024. "Modelling of Reliability Indicators of a Mining Plant," Mathematics, MDPI, vol. 12(18), pages 1-25, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2842-:d:1477094
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/18/2842/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/18/2842/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boris V. Malozyomov & Nikita V. Martyushev & Elena V. Voitovich & Roman V. Kononenko & Vladimir Yu. Konyukhov & Vadim Tynchenko & Viktor Alekseevich Kukartsev & Yadviga Aleksandrovna Tynchenko, 2023. "Designing the Optimal Configuration of a Small Power System for Autonomous Power Supply of Weather Station Equipment," Energies, MDPI, vol. 16(13), pages 1-30, June.
    2. Marina A. Nevskaya & Semen M. Raikhlin & Victoriya V. Vinogradova & Victor V. Belyaev & Mark M. Khaikin, 2023. "A Study of Factors Affecting National Energy Efficiency," Energies, MDPI, vol. 16(13), pages 1-14, July.
    3. Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Modeling of Mechanical Forces and Power Balance in Electromechanical Energy Converter," Mathematics, MDPI, vol. 11(10), pages 1-11, May.
    4. Boris V. Malozyomov & Nikita V. Martyushev & Vladimir Yu. Konyukhov & Tatiana A. Oparina & Nikolay A. Zagorodnii & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Analysis of the Reliability of Modern Trolleybuses and Electric Buses," Mathematics, MDPI, vol. 11(15), pages 1-25, July.
    5. Kang, Jichuan & Sun, Liping & Guedes Soares, C., 2019. "Fault Tree Analysis of floating offshore wind turbines," Renewable Energy, Elsevier, vol. 133(C), pages 1455-1467.
    6. Guang-Jun Jiang & Zong-Yuan Li & Guan Qiao & Hong-Xia Chen & Hai-Bin Li & Hong-Hua Sun, 2021. "Reliability Analysis of Dynamic Fault Tree Based on Binary Decision Diagrams for Explosive Vehicle," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, April.
    7. Yuriy Zhukovskiy & Aleksandra Buldysko & Ilia Revin, 2023. "Induction Motor Bearing Fault Diagnosis Based on Singular Value Decomposition of the Stator Current," Energies, MDPI, vol. 16(8), pages 1-23, April.
    8. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Modeling the Performance of an Electric Vehicle Considering Various Driving Cycles," Mathematics, MDPI, vol. 11(11), pages 1-26, June.
    9. Balbir S. Dhillon, 2008. "Mining Equipment Reliability, Maintainability, and Safety," Springer Series in Reliability Engineering, Springer, number 978-1-84800-288-3, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavel V. Shishkin & Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2024. "Mathematical Logic Model for Analysing the Controllability of Mining Equipment," Mathematics, MDPI, vol. 12(11), pages 1-20, May.
    2. Pavel V. Shishkin & Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2024. "Development of a Mathematical Model of Operation Reliability of Mine Hoisting Plants," Mathematics, MDPI, vol. 12(12), pages 1-26, June.
    3. Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2024. "Mathematical Modelling of Traction Equipment Parameters of Electric Cargo Trucks," Mathematics, MDPI, vol. 12(4), pages 1-32, February.
    4. Nikita V. Martyushev & Boris V. Malozyomov & Olga A. Filina & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2023. "Stochastic Models and Processing Probabilistic Data for Solving the Problem of Improving the Electric Freight Transport Reliability," Mathematics, MDPI, vol. 11(23), pages 1-19, November.
    5. Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2024. "Analysis of a Predictive Mathematical Model of Weather Changes Based on Neural Networks," Mathematics, MDPI, vol. 12(3), pages 1-17, February.
    6. Prerita Odeyar & Derek B. Apel & Robert Hall & Brett Zon & Krzysztof Skrzypkowski, 2022. "A Review of Reliability and Fault Analysis Methods for Heavy Equipment and Their Components Used in Mining," Energies, MDPI, vol. 15(17), pages 1-27, August.
    7. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2023. "Review Models and Methods for Determining and Predicting the Reliability of Technical Systems and Transport," Mathematics, MDPI, vol. 11(15), pages 1-31, July.
    8. Boris V. Malozyomov & Nikita V. Martyushev & Vladimir Yu. Konyukhov & Tatiana A. Oparina & Nikolay A. Zagorodnii & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Analysis of the Reliability of Modern Trolleybuses and Electric Buses," Mathematics, MDPI, vol. 11(15), pages 1-25, July.
    9. Olga A. Filina & Nikita V. Martyushev & Boris V. Malozyomov & Vadim Sergeevich Tynchenko & Viktor Alekseevich Kukartsev & Kirill Aleksandrovich Bashmur & Pavel P. Pavlov & Tatyana Aleksandrovna Panfil, 2023. "Increasing the Efficiency of Diagnostics in the Brush-Commutator Assembly of a Direct Current Electric Motor," Energies, MDPI, vol. 17(1), pages 1-24, December.
    10. Boris V. Malozyomov & Nikita V. Martyushev & Vladislav V. Kukartsev & Vadim S. Tynchenko & Vladimir V. Bukhtoyarov & Xiaogang Wu & Yadviga A. Tyncheko & Viktor A. Kukartsev, 2023. "Overview of Methods for Enhanced Oil Recovery from Conventional and Unconventional Reservoirs," Energies, MDPI, vol. 16(13), pages 1-48, June.
    11. Vasilev Bogdan Yurievich & Nguyen The Hien, 2024. "Stochastic Pulse-Width Modulation and Modification of Direct Torque Control Based on a Three-Level Neutral-Point Clamped Inverter," Energies, MDPI, vol. 17(23), pages 1-24, November.
    12. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    13. Michail Cheliotis & Evangelos Boulougouris & Nikoletta L Trivyza & Gerasimos Theotokatos & George Livanos & George Mantalos & Athanasios Stubos & Emmanuel Stamatakis & Alexandros Venetsanos, 2021. "Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry," Energies, MDPI, vol. 14(11), pages 1-20, May.
    14. Khalid Khan & Inna Samuilik & Amir Ali, 2024. "A Mathematical Model for Dynamic Electric Vehicles: Analysis and Optimization," Mathematics, MDPI, vol. 12(2), pages 1-19, January.
    15. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
    16. Diana Dmitrieva & Victoria Solovyova, 2024. "A Taxonomy of Mineral Resource Projects in the Arctic: A Path to Sustainable Financing?," Sustainability, MDPI, vol. 16(11), pages 1-17, June.
    17. Orlando Durán & Andrea Capaldo & Paulo Andrés Duran Acevedo, 2018. "Sustainable Overall Throughputability Effectiveness (S.O.T.E.) as a Metric for Production Systems," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
    18. Andrey Lebedev & Alexey Cherepovitsyn, 2024. "Waste Management during the Production Drilling Stage in the Oil and Gas Sector: A Feasibility Study," Resources, MDPI, vol. 13(2), pages 1-30, February.
    19. Sri Indah Nikensari & Ega Nurdiyanto & Wong Sing Yun & Siti Fatimah Zahra, 2024. "Sustainable Exports to the European Union from ASEAN Countries: Is There an Impact of Low Carbon Economy?," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 616-623, July.
    20. Hailun Xie & Lars Johanning, 2023. "A Hierarchical Met-Ocean Data Selection Model for Fast O&M Simulation in Offshore Renewable Energy Systems," Energies, MDPI, vol. 16(3), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2842-:d:1477094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.