IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223028542.html
   My bibliography  Save this article

State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree

Author

Listed:
  • Pan, Rui
  • Liu, Tongshen
  • Huang, Wei
  • Wang, Yuxin
  • Yang, Duo
  • Chen, Jie

Abstract

To ensure the stable, reliable, and safe operation of lithium-ion batteries, the state of health (SOH) serves as a crucial basis for battery safety monitoring and operational maintenance. However, the complex working environment of batteries leads to the presence of a significant amount of noise data, abnormal data, and data discontinuities, posing challenges for battery feature extraction and SOH estimation. To address this issue, this paper proposes a two-stage transformation-based feature extraction method combined with the gradient boosting decision tree (GBDT) algorithm. The two-stage transformation feature extraction method utilizes singular spectrum analysis (SSA) and fast Fourier transform (FFT) to extract time-domain and frequency-domain health features from the battery data, respectively. The GBDT ensemble learning algorithm is employed to estimate the SOH of lithium-ion batteries, leveraging the capability to effectively uncover and learn relevant features by combining multiple weak learners into a strong model. Furthermore, correlation analysis and ablation experiments are conducted to validate the effectiveness of the two-stage feature extraction method. Additionally, four sets of comparative experiments are designed to demonstrate the superior performance of the GBDT method compared to four other machine learning methods. The experimental results show that the mean absolute error (MAE) and root mean square error (RMSE) of SOH estimation using the proposed method do not exceed 3 % on the NASA and CALCE datasets.

Suggested Citation

  • Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028542
    DOI: 10.1016/j.energy.2023.129460
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223028542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Golyandina, Nina & Korobeynikov, Anton, 2014. "Basic Singular Spectrum Analysis and forecasting with R," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 934-954.
    3. Lin, Mingqiang & You, Yuqiang & Wang, Wei & Wu, Ji, 2023. "Battery health prognosis with gated recurrent unit neural networks and hidden Markov model considering uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Patil, Meru A. & Tagade, Piyush & Hariharan, Krishnan S. & Kolake, Subramanya M. & Song, Taewon & Yeo, Taejung & Doo, Seokgwang, 2015. "A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation," Applied Energy, Elsevier, vol. 159(C), pages 285-297.
    5. Wu, Ji & Fang, Leichao & Dong, Guangzhong & Lin, Mingqiang, 2023. "State of health estimation of lithium-ion battery with improved radial basis function neural network," Energy, Elsevier, vol. 262(PB).
    6. Li, J. & Adewuyi, K. & Lotfi, N. & Landers, R.G. & Park, J., 2018. "A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation," Applied Energy, Elsevier, vol. 212(C), pages 1178-1190.
    7. Tian, Jiaqiang & Liu, Xinghua & Li, Siqi & Wei, Zhongbao & Zhang, Xu & Xiao, Gaoxi & Wang, Peng, 2023. "Lithium-ion battery health estimation with real-world data for electric vehicles," Energy, Elsevier, vol. 270(C).
    8. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    9. Yang, Fangfang & Song, Xiangbao & Dong, Guangzhong & Tsui, Kwok-Leung, 2019. "A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries," Energy, Elsevier, vol. 171(C), pages 1173-1182.
    10. Mei Zhang & Wanli Chen & Jun Yin & Tao Feng, 2022. "Lithium Battery Health Factor Extraction Based on Improved Douglas–Peucker Algorithm and SOH Prediction Based on XGboost," Energies, MDPI, vol. 15(16), pages 1-18, August.
    11. Tian, Jiaqiang & Xu, Ruilong & Wang, Yujie & Chen, Zonghai, 2021. "Capacity attenuation mechanism modeling and health assessment of lithium-ion batteries," Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Zhihao & Zhang, Wei & Yao, Peng & Long, Zhenhua & Bai, Mingling & Liu, Jinfu & Yu, Daren, 2024. "More realistic degradation trend prediction for gas turbine based on factor analysis and multiple penalty mechanism loss function," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xinghua & Li, Siqi & Tian, Jiaqiang & Wei, Zhongbao & Wang, Peng, 2023. "Health estimation of lithium-ion batteries with voltage reconstruction and fusion model," Energy, Elsevier, vol. 282(C).
    2. Guo, Yongfang & Yu, Xiangyuan & Wang, Yashuang & Huang, Kai, 2024. "Health prognostics of lithium-ion batteries based on universal voltage range features mining and adaptive multi-Gaussian process regression with Harris Hawks optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    3. Tian, Jiaqiang & Fan, Yuan & Pan, Tianhong & Zhang, Xu & Yin, Jianning & Zhang, Qingping, 2024. "A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Ruan, Haokai & Wei, Zhongbao & Shang, Wentao & Wang, Xuechao & He, Hongwen, 2023. "Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging," Applied Energy, Elsevier, vol. 336(C).
    5. Xinwei Sun & Yang Zhang & Yongcheng Zhang & Licheng Wang & Kai Wang, 2023. "Summary of Health-State Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(15), pages 1-19, July.
    6. Zhou, Danhua & Wang, Bin & Zhu, Chao & Zhou, Fang & Wu, Hong, 2023. "A light-weight feature extractor for lithium-ion battery health prognosis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Wang, Cong & Chen, Yunxia & Zhang, Qingyuan & Zhu, Jiaxiao, 2023. "Dynamic early recognition of abnormal lithium-ion batteries before capacity drops using self-adaptive quantum clustering," Applied Energy, Elsevier, vol. 336(C).
    8. Fei, Zicheng & Yang, Fangfang & Tsui, Kwok-Leung & Li, Lishuai & Zhang, Zijun, 2021. "Early prediction of battery lifetime via a machine learning based framework," Energy, Elsevier, vol. 225(C).
    9. Tian, Jiaqiang & Liu, Xinghua & Li, Siqi & Wei, Zhongbao & Zhang, Xu & Xiao, Gaoxi & Wang, Peng, 2023. "Lithium-ion battery health estimation with real-world data for electric vehicles," Energy, Elsevier, vol. 270(C).
    10. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
    11. Ester Vasta & Tommaso Scimone & Giovanni Nobile & Otto Eberhardt & Daniele Dugo & Massimiliano Maurizio De Benedetti & Luigi Lanuzza & Giuseppe Scarcella & Luca Patanè & Paolo Arena & Mario Cacciato, 2023. "Models for Battery Health Assessment: A Comparative Evaluation," Energies, MDPI, vol. 16(2), pages 1-34, January.
    12. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    13. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    14. Xingxing Wang & Peilin Ye & Shengren Liu & Yu Zhu & Yelin Deng & Yinnan Yuan & Hongjun Ni, 2023. "Research Progress of Battery Life Prediction Methods Based on Physical Model," Energies, MDPI, vol. 16(9), pages 1-20, April.
    15. Lai, Xin & Yao, Yi & Tang, Xiaopeng & Zheng, Yuejiu & Zhou, Yuanqiang & Sun, Yuedong & Gao, Furong, 2023. "Voltage profile reconstruction and state of health estimation for lithium-ion batteries under dynamic working conditions," Energy, Elsevier, vol. 282(C).
    16. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    17. Kong, Jin-zhen & Yang, Fangfang & Zhang, Xi & Pan, Ershun & Peng, Zhike & Wang, Dong, 2021. "Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries," Energy, Elsevier, vol. 223(C).
    18. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "An interpretable state of health estimation method for lithium-ion batteries based on multi-category and multi-stage features," Energy, Elsevier, vol. 283(C).
    19. Wang, Tianyu & Ma, Zhongjing & Zou, Suli & Chen, Zhan & Wang, Peng, 2024. "Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels," Applied Energy, Elsevier, vol. 355(C).
    20. Ospina Agudelo, Brian & Zamboni, Walter & Monmasson, Eric, 2021. "Application domain extension of incremental capacity-based battery SoH indicators," Energy, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.