IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9507-d1004016.html
   My bibliography  Save this article

Signal Spectrum-Based Machine Learning Approach for Fault Prediction and Maintenance of Electrical Machines

Author

Listed:
  • Hadi Ashraf Raja

    (Department of Electrical Power Engineering & Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Karolina Kudelina

    (Department of Electrical Power Engineering & Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Bilal Asad

    (Department of Electrical Power Engineering & Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Toomas Vaimann

    (Department of Electrical Power Engineering & Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Ants Kallaste

    (Department of Electrical Power Engineering & Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Anton Rassõlkin

    (Department of Electrical Power Engineering & Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia)

  • Huynh Van Khang

    (Department of Engineering Sciences, University of Agder, 4604 Kristiansand, Norway)

Abstract

Industrial revolution 4.0 has enabled the advent of new technological advancements, including the introduction of information technology with physical devices. The implementation of information technology in industrial applications has helped streamline industrial processes and make them more cost-efficient. This combination of information technology and physical devices gave birth to smart devices, which opened up a new research area known as the Internet of Things (IoT). This has enabled researchers to help reduce downtime and maintenance costs by applying condition monitoring on electrical machines utilizing machine learning algorithms. Although the industry is trying to move from scheduled maintenance towards predictive maintenance, there is a significant lack of algorithms related to fault prediction of electrical machines. There is quite a lot of research going on in this area, but it is still underdeveloped and needs a lot more work. This paper presents a signal spectrum-based machine learning approach toward the fault prediction of electrical machines. The proposed method is a new approach to the predictive maintenance of electrical machines. This paper presents the details regarding the algorithm and then validates the accuracy against data collected from working electrical machines for both cases. A comparison is also presented at the end of multiple machine learning algorithms used for training based on this approach.

Suggested Citation

  • Hadi Ashraf Raja & Karolina Kudelina & Bilal Asad & Toomas Vaimann & Ants Kallaste & Anton Rassõlkin & Huynh Van Khang, 2022. "Signal Spectrum-Based Machine Learning Approach for Fault Prediction and Maintenance of Electrical Machines," Energies, MDPI, vol. 15(24), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9507-:d:1004016
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9507/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9507/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karolina Kudelina & Bilal Asad & Toomas Vaimann & Anton Rassõlkin & Ants Kallaste & Huynh Van Khang, 2021. "Methods of Condition Monitoring and Fault Detection for Electrical Machines," Energies, MDPI, vol. 14(22), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siddique Akbar & Toomas Vaimann & Bilal Asad & Ants Kallaste & Muhammad Usman Sardar & Karolina Kudelina, 2023. "State-of-the-Art Techniques for Fault Diagnosis in Electrical Machines: Advancements and Future Directions," Energies, MDPI, vol. 16(17), pages 1-44, September.
    2. Yuriy Zhukovskiy & Aleksandra Buldysko & Ilia Revin, 2023. "Induction Motor Bearing Fault Diagnosis Based on Singular Value Decomposition of the Stator Current," Energies, MDPI, vol. 16(8), pages 1-23, April.
    3. Viktor Rjabtšikov & Anton Rassõlkin & Karolina Kudelina & Ants Kallaste & Toomas Vaimann, 2023. "Review of Electric Vehicle Testing Procedures for Digital Twin Development: A Comprehensive Analysis," Energies, MDPI, vol. 16(19), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toomas Vaimann & Jose Alfonso Antonino-Daviu & Anton Rassõlkin, 2023. "Novel Approaches to Electrical Machine Fault Diagnosis," Energies, MDPI, vol. 16(15), pages 1-4, July.
    2. Viktor Rjabtšikov & Anton Rassõlkin & Karolina Kudelina & Ants Kallaste & Toomas Vaimann, 2023. "Review of Electric Vehicle Testing Procedures for Digital Twin Development: A Comprehensive Analysis," Energies, MDPI, vol. 16(19), pages 1-17, October.
    3. Jose R. Huerta-Rosales & David Granados-Lieberman & Juan P. Amezquita-Sanchez & Arturo Garcia-Perez & Maximiliano Bueno-Lopez & Martin Valtierra-Rodriguez, 2022. "Contrast Estimation in Vibroacoustic Signals for Diagnosing Early Faults of Short-Circuited Turns in Transformers under Different Load Conditions," Energies, MDPI, vol. 15(22), pages 1-15, November.
    4. Sebastian Berhausen & Tomasz Jarek, 2022. "Analysis of Impact of Design Solutions of an Electric Machine with Permanent Magnets for Bearing Voltages with Inverter Power Supply," Energies, MDPI, vol. 15(12), pages 1-19, June.
    5. Mikko Tahkola & Áron Szücs & Jari Halme & Akhtar Zeb & Janne Keränen, 2022. "A Novel Machine Learning-Based Approach for Induction Machine Fault Classifier Development—A Broken Rotor Bar Case Study," Energies, MDPI, vol. 15(9), pages 1-23, May.
    6. Krzysztof Kolano & Artur Jan Moradewicz & Bartosz Drzymała & Jakub Gęca, 2022. "Influence of the Placement Accuracy of the Brushless DC Motor Hall Sensor on Inverter Transistor Losses," Energies, MDPI, vol. 15(5), pages 1-13, March.
    7. Hoffstaedt, J.P. & Truijen, D.P.K. & Fahlbeck, J. & Gans, L.H.A. & Qudaih, M. & Laguna, A.J. & De Kooning, J.D.M. & Stockman, K. & Nilsson, H. & Storli, P.-T. & Engel, B. & Marence, M. & Bricker, J.D., 2022. "Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Ahmed Belkhadir & Remus Pusca & Driss Belkhayat & Raphaël Romary & Youssef Zidani, 2023. "Analytical Modeling, Analysis and Diagnosis of External Rotor PMSM with Stator Winding Unbalance Fault," Energies, MDPI, vol. 16(7), pages 1-23, April.
    9. Muhammad Usman Sardar & Toomas Vaimann & Lauri Kütt & Ants Kallaste & Bilal Asad & Siddique Akbar & Karolina Kudelina, 2023. "Inverter-Fed Motor Drive System: A Systematic Analysis of Condition Monitoring and Practical Diagnostic Techniques," Energies, MDPI, vol. 16(15), pages 1-41, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9507-:d:1004016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.