IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3185-d1113467.html
   My bibliography  Save this article

Assessment of the Impact of Technological Development and Scenario Forecasting of the Sustainable Development of the Fuel and Energy Complex

Author

Listed:
  • Yuriy Zhukovskiy

    (Educational Research Center for Digital Technologies, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia)

  • Anastasia Koshenkova

    (Department of Environmental Geology, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia)

  • Valeriya Vorobeva

    (Department of Electrical Engineering, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia)

  • Daniil Rasputin

    (Department of Electronic Systems, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia)

  • Roman Pozdnyakov

    (Department of Heat Engineering, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia)

Abstract

The beginning of the 21st century for the fuel and energy complexes of most countries is characterized as a period of active restructuring and a fundamental shift in developmental priorities. The basis of these changes is technological development. Industry 4.0 technologies have particular importance in achieving maximum optimization of production processes. In the same way, they are applicable in establishing effective interaction between the energy sector and other sectors of the economy. The authors outline an approach to assessing the country’s fuel and energy balance state through the selected properties: sustainability, accessibility, efficiency, adaptability and reliability. Hence, a model of the fuel and energy complex was created on the example of the Russian Federation, considering the country’s territorial and functional division. The methodology is based on scenario modeling of the influence level of external challenges in conjunction with the accompanying technological development. The mathematical model allowed forecasting changes in the properties of the energy system. The scientific significance of the work lies in the application of a consistent hybrid modeling approach to forecast the state of the fuel and energy balance. The results of the study are useful in compiling scenarios for the regional and entire development of the fuel and energy complex. Further model improvements should include an expansion of the number of counted industries and their relations.

Suggested Citation

  • Yuriy Zhukovskiy & Anastasia Koshenkova & Valeriya Vorobeva & Daniil Rasputin & Roman Pozdnyakov, 2023. "Assessment of the Impact of Technological Development and Scenario Forecasting of the Sustainable Development of the Fuel and Energy Complex," Energies, MDPI, vol. 16(7), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3185-:d:1113467
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3185/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3185/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yaroslav Shklyarskiy & Iuliia Dobush & Miguel Jiménez Carrizosa & Vasiliy Dobush & Aleksandr Skamyin, 2021. "Method for Evaluation of the Utility’s and Consumers’ Contribution to the Current and Voltage Distortions at the PCC," Energies, MDPI, vol. 14(24), pages 1-21, December.
    2. Denis Anatolievich Ustinov & Ershat Rashitovich Shafhatov, 2022. "Assessment of Reliability Indicators of Combined Systems of Offshore Wind Turbines and Wave Energy Converters," Energies, MDPI, vol. 15(24), pages 1-20, December.
    3. George Buslaev & Pavel Tsvetkov & Alexander Lavrik & Andrey Kunshin & Elizaveta Loseva & Dmitry Sidorov, 2021. "Ensuring the Sustainability of Arctic Industrial Facilities under Conditions of Global Climate Change," Resources, MDPI, vol. 10(12), pages 1-15, December.
    4. Radel Sultanbekov & Ilia Beloglazov & Shamil Islamov & Muk Chen Ong, 2021. "Exploring of the Incompatibility of Marine Residual Fuel: A Case Study Using Machine Learning Methods," Energies, MDPI, vol. 14(24), pages 1-16, December.
    5. Sergey Evgenievich Barykin & Elena Aleksandrovna Smirnova & Dan Chzhao & Irina Vasilievna Kapustina & Sergey Mikhailovich Sergeev & Yuri Yurievich Mikhalchevsky & Alexander Viktorovich Gubenko & Genna, 2021. "Digital Echelons and Interfaces within Value Chains: End-to-End Marketing and Logistics Integration," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    6. Michael Karikari Appiah & Rosemary Anderson Akolaa & Angela Kyerewaa Ayisi-Addo, 2022. "Modeling the impact of macroenvironmental forces on investment in Renewable Energy Technologies in Ghana: the moderating role of Entrepreneurship orientation dimensions," Cogent Economics & Finance, Taylor & Francis Journals, vol. 10(1), pages 2071387-207, December.
    7. Olga Novikova & Iaroslav Vladimirov & Tatiana Bugaeva, 2021. "Expansion of the Fuel and Energy Balance Structure in Russia through the Development of a Closed-Loop Recycling," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
    8. Yuriy Zhukovskiy & Pavel Tsvetkov & Aleksandra Buldysko & Yana Malkova & Antonina Stoianova & Anastasia Koshenkova, 2021. "Scenario Modeling of Sustainable Development of Energy Supply in the Arctic," Resources, MDPI, vol. 10(12), pages 1-25, December.
    9. Elizabeth Shove, 2021. "Time to rethink energy research," Nature Energy, Nature, vol. 6(2), pages 118-120, February.
    10. Nikita Dmitrievich Senchilo & Denis Anatolievich Ustinov, 2021. "Method for Determining the Optimal Capacity of Energy Storage Systems with a Long-Term Forecast of Power Consumption," Energies, MDPI, vol. 14(21), pages 1-25, October.
    11. Ilia Shushpanov & Konstantin Suslov & Pavel Ilyushin & Denis N. Sidorov, 2021. "Towards the Flexible Distribution Networks Design Using the Reliability Performance Metric," Energies, MDPI, vol. 14(19), pages 1-24, September.
    12. Nadiia Artyukhova & Inna Tiutiunyk & Sylwester Bogacki & Tomasz Wołowiec & Oleksandr Dluhopolskyi & Yevhen Kovalenko, 2022. "Scenario Modeling of Energy Policies for Sustainable Development," Energies, MDPI, vol. 15(20), pages 1-24, October.
    13. Nikolay Korolev & Anatoly Kozyaruk & Valentin Morenov, 2021. "Efficiency Increase of Energy Systems in Oil and Gas Industry by Evaluation of Electric Drive Lifecycle," Energies, MDPI, vol. 14(19), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuriy Zhukovskiy & Pavel Tsvetkov & Anastasia Koshenkova & Ivan Skvortsov & Iuliia Andreeva & Valeriya Vorobeva, 2024. "A Methodology for Forecasting the KPIs of a Region’s Development: Case of the Russian Arctic," Sustainability, MDPI, vol. 16(15), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuriy Leonidovich Zhukovskiy & Margarita Sergeevna Kovalchuk & Daria Evgenievna Batueva & Nikita Dmitrievich Senchilo, 2021. "Development of an Algorithm for Regulating the Load Schedule of Educational Institutions Based on the Forecast of Electric Consumption within the Framework of Application of the Demand Response," Sustainability, MDPI, vol. 13(24), pages 1-26, December.
    2. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    3. Kyaw Zay Ya & Boris Goryachev & Arkadiy Adigamov & Karina Nurgalieva & Igor Narozhnyy, 2022. "Thermodynamics and Electrochemistry of the Interaction of Sphalerite with Iron (II)-Bearing Compounds in Relation to Flotation," Resources, MDPI, vol. 11(12), pages 1-10, November.
    4. Yuriy Zhukovskiy & Aleksandra Buldysko & Ilia Revin, 2023. "Induction Motor Bearing Fault Diagnosis Based on Singular Value Decomposition of the Stator Current," Energies, MDPI, vol. 16(8), pages 1-23, April.
    5. Yana Us & Tetyana Pimonenko & Oleksii Lyulyov, 2023. "Corporate Social Responsibility and Renewable Energy Development for the Green Brand within SDGs: A Meta-Analytic Review," Energies, MDPI, vol. 16(5), pages 1-18, February.
    6. Lin, Chia-Yang & Chau, Ka Yin & Tran, Trung Kien & Sadiq, Muhammad & Van, Le & Hien Phan, Thi Thu, 2022. "Development of renewable energy resources by green finance, volatility and risk: Empirical evidence from China," Renewable Energy, Elsevier, vol. 201(P1), pages 821-831.
    7. Yin-Yin Huang & Ruey-Chyn Tsaur & Nei-Chin Huang, 2022. "Sustainable Fuzzy Portfolio Selection Concerning Multi-Objective Risk Attitudes in Group Decision," Mathematics, MDPI, vol. 10(18), pages 1-15, September.
    8. Inzir Raupov & Mikhail Rogachev & Julia Sytnik, 2023. "Design of a Polymer Composition for the Conformance Control in Heterogeneous Reservoirs," Energies, MDPI, vol. 16(1), pages 1-18, January.
    9. Lin, Yuanxiong & Anser, Muhammad Khalid & Peng, Michael Yao-Ping & Irfan, Muhammad, 2023. "Assessment of renewable energy, financial growth and in accomplishing targets of China's cities carbon neutrality," Renewable Energy, Elsevier, vol. 205(C), pages 1082-1091.
    10. Andrey Achitaev & Pavel Ilyushin & Konstantin Suslov & Sergey Kobyletski, 2022. "Dynamic Simulation of Starting and Emergency Conditions of a Hydraulic Unit Based on a Francis Turbine," Energies, MDPI, vol. 15(21), pages 1-18, October.
    11. Bohan Zhang & Jianfu Ma & Muhammad Asghar Khan & Valentina Repnikova & Kseniia Shidlovskaya & Sergey Barykin & Muhammad Salman Ahmad, 2023. "The Effect of Economic Policy Uncertainty on Foreign Direct Investment in the Era of Global Value Chain: Evidence from the Asian Countries," Sustainability, MDPI, vol. 15(7), pages 1-21, April.
    12. Marina A. Nevskaya & Semen M. Raikhlin & Amina F. Chanysheva, 2024. "Assessment of Energy Efficiency Projects at Russian Mining Enterprises within the Framework of Sustainable Development," Sustainability, MDPI, vol. 16(17), pages 1-20, August.
    13. Leanne S. Giordono & June Flora & Chad Zanocco & Hilary Boudet, 2022. "Food Practice Lifestyles: Identification and Implications for Energy Sustainability," IJERPH, MDPI, vol. 19(9), pages 1-19, May.
    14. Victor I. Bolobov & Il’nur U. Latipov & Valentin S. Zhukov & Gregory G. Popov, 2023. "Using the Magnetic Anisotropy Method to Determine Hydrogenated Sections of a Steel Pipeline," Energies, MDPI, vol. 16(15), pages 1-15, July.
    15. Simone Ferrari & Milad Zoghi & Giancarlo Paganin & Giuliano Dall’O’, 2023. "A Practical Review to Support the Implementation of Smart Solutions within Neighbourhood Building Stock," Energies, MDPI, vol. 16(15), pages 1-35, July.
    16. Dmitriy Karamov & Pavel Ilyushin & Ilya Minarchenko & Sergey Filippov & Konstantin Suslov, 2023. "The Role of Energy Performance Agreements in the Sustainable Development of Decentralized Energy Systems: Methodology for Determining the Equilibrium Conditions of the Contract," Energies, MDPI, vol. 16(6), pages 1-12, March.
    17. George Buslaev & Pavel Tsvetkov & Alexander Lavrik & Andrey Kunshin & Elizaveta Loseva & Dmitry Sidorov, 2021. "Ensuring the Sustainability of Arctic Industrial Facilities under Conditions of Global Climate Change," Resources, MDPI, vol. 10(12), pages 1-15, December.
    18. Niskanen, Johan & Rohracher, Harald, 2022. "A politics of calculation: Negotiating pathways to zero-energy buildings in Sweden," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    19. Pavel Ilyushin & Sergey Filippov & Aleksandr Kulikov & Konstantin Suslov & Dmitriy Karamov, 2022. "Intelligent Control of the Energy Storage System for Reliable Operation of Gas-Fired Reciprocating Engine Plants in Systems of Power Supply to Industrial Facilities," Energies, MDPI, vol. 15(17), pages 1-21, August.
    20. Ulvi Rzazade & Sergey Deryabin & Igor Temkin & Egor Kondratev & Alexander Ivannikov, 2023. "On the Issue of the Creation and Functioning of Energy Efficiency Management Systems for Technological Processes of Mining Enterprises," Energies, MDPI, vol. 16(13), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3185-:d:1113467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.