IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v229y2021ics0360544221010343.html
   My bibliography  Save this article

Fuel cell hybrid range-extender vehicle sizing: Parametric power optimization

Author

Listed:
  • Taghavifar, Hadi

Abstract

E-transportation is a next generation technology for internal combustion engine phase-out. In present study, three drivetrain cases are designed: internal combustion engine (ICE), engine-fuel cell coupled configuration, and ICE-catalyst modes. First, the ICE-FC configuration is analyzed and compared with the ICE driven powertrain. Then, the emission of ICE-catalyst mode is compared with that of ICE-FC configuration. The proposed driveline parameters have been examined to monitor the emission, fuel economy, and efficiency of the overall hybrid system. The results indicated that in the new European driving cycle (NEDC), the mileage in hybrid mode has been extended from 3.4 km to 11.0 km. The results also show that by shifting from ICE alone to ICE-FC mode, the fuel consumption (gasoline) decreased from 26.24 1/100 km to 5.38 1/100 km. In addition, the NOx, CO, and HC species have been dropped by 47.7%, 61.7%, and 26.7%, respectively. The engine displacement, cell number of FC and GDL thickness are changed in two levels. Accordingly, when the GDL is thinner, the H2 consumption is marginally lower while the FC energy output increases up to 5400 kJ and the electric fuel economy is promoted by 6.43%.

Suggested Citation

  • Taghavifar, Hadi, 2021. "Fuel cell hybrid range-extender vehicle sizing: Parametric power optimization," Energy, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:energy:v:229:y:2021:i:c:s0360544221010343
    DOI: 10.1016/j.energy.2021.120786
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221010343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120786?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López, I. & Ibarra, E. & Matallana, A. & Andreu, J. & Kortabarria, I., 2019. "Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Xie, Shaobo & Hu, Xiaosong & Qi, Shanwei & Tang, Xiaolin & Lang, Kun & Xin, Zongke & Brighton, James, 2019. "Model predictive energy management for plug-in hybrid electric vehicles considering optimal battery depth of discharge," Energy, Elsevier, vol. 173(C), pages 667-678.
    3. Hu, Xiaosong & Zhang, Xiaoqian & Tang, Xiaolin & Lin, Xianke, 2020. "Model predictive control of hybrid electric vehicles for fuel economy, emission reductions, and inter-vehicle safety in car-following scenarios," Energy, Elsevier, vol. 196(C).
    4. Hu, Jiayi & Li, Jianqiu & Hu, Zunyan & Xu, Liangfei & Ouyang, Minggao, 2021. "Power distribution strategy of a dual-engine system for heavy-duty hybrid electric vehicles using dynamic programming," Energy, Elsevier, vol. 215(PA).
    5. Xie, Shaobo & Hu, Xiaosong & Liu, Teng & Qi, Shanwei & Lang, Kun & Li, Huiling, 2019. "Predictive vehicle-following power management for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 166(C), pages 701-714.
    6. Shen, Peihong & Zhao, Zhiguo & Zhan, Xiaowen & Li, Jingwei & Guo, Qiuyi, 2018. "Optimal energy management strategy for a plug-in hybrid electric commercial vehicle based on velocity prediction," Energy, Elsevier, vol. 155(C), pages 838-852.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian Zhang & Shaopeng Tian, 2023. "Energy Consumption Prediction and Control Algorithm for Hybrid Electric Vehicles Based on an Equivalent Minimum Fuel Consumption Model," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    2. Kim, Dong-Min & Lee, Soo-Gyung & Kim, Dae-Kee & Park, Min-Ro & Lim, Myung-Seop, 2022. "Sizing and optimization process of hybrid electric propulsion system for heavy-duty vehicle based on Gaussian process modeling considering traction motor characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shuo & Hu, Xiaosong & Xie, Shaobo & Song, Ziyou & Hu, Lin & Hou, Cong, 2019. "Adaptively coordinated optimization of battery aging and energy management in plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 256(C).
    2. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Xiaobo Sun & Weirong Liu & Mengfei Wen & Yue Wu & Heng Li & Jiahao Huang & Chao Hu & Zhiwu Huang, 2021. "A Real-Time Optimal Car-Following Power Management Strategy for Hybrid Electric Vehicles with ACC Systems," Energies, MDPI, vol. 14(12), pages 1-17, June.
    4. Xie, Shaobo & Qi, Shanwei & Lang, Kun & Tang, Xiaolin & Lin, Xianke, 2020. "Coordinated management of connected plug-in hybrid electric buses for energy saving, inter-vehicle safety, and battery health," Applied Energy, Elsevier, vol. 268(C).
    5. Yang, Jibin & Xu, Xiaohui & Peng, Yiqiang & Zhang, Jiye & Song, Pengyun, 2019. "Modeling and optimal energy management strategy for a catenary-battery-ultracapacitor based hybrid tramway," Energy, Elsevier, vol. 183(C), pages 1123-1135.
    6. Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
    7. Yang, Chao & Wang, Muyao & Wang, Weida & Pu, Zesong & Ma, Mingyue, 2021. "An efficient vehicle-following predictive energy management strategy for PHEV based on improved sequential quadratic programming algorithm," Energy, Elsevier, vol. 219(C).
    8. Zhang, Yuanjian & Chu, Liang & Fu, Zicheng & Xu, Nan & Guo, Chong & Zhao, Di & Ou, Yang & Xu, Lei, 2020. "Energy management strategy for plug-in hybrid electric vehicle integrated with vehicle-environment cooperation control," Energy, Elsevier, vol. 197(C).
    9. Wang, Yue & Zeng, Xiaohua & Song, Dafeng, 2020. "Hierarchical optimal intelligent energy management strategy for a power-split hybrid electric bus based on driving information," Energy, Elsevier, vol. 199(C).
    10. Wang, Yue & Li, Keqiang & Zeng, Xiaohua & Gao, Bolin & Hong, Jichao, 2023. "Investigation of novel intelligent energy management strategies for connected HEB considering global planning of fixed-route information," Energy, Elsevier, vol. 263(PB).
    11. Barbosa, Társis Prado & Eckert, Jony Javorski & Roso, Vinícius Rückert & Pujatti, Fabrício José Pacheco & da Silva, Leonardo Adolpho Rodrigues & Horta Gutiérrez, Juan Carlos, 2021. "Fuel saving and lower pollutants emissions using an ethanol-fueled engine in a hydraulic hybrid passengers vehicle," Energy, Elsevier, vol. 235(C).
    12. Wang, Yue & Li, Keqiang & Zeng, Xiaohua & Gao, Bolin & Hong, Jichao, 2022. "Energy consumption characteristics based driving conditions construction and prediction for hybrid electric buses energy management," Energy, Elsevier, vol. 245(C).
    13. Yaqian Wang & Xiaohong Jiao, 2022. "Dual Heuristic Dynamic Programming Based Energy Management Control for Hybrid Electric Vehicles," Energies, MDPI, vol. 15(9), pages 1-19, April.
    14. Alcázar-García, Désirée & Romeral Martínez, José Luis, 2022. "Model-based design validation and optimization of drive systems in electric, hybrid, plug-in hybrid and fuel cell vehicles," Energy, Elsevier, vol. 254(PA).
    15. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    16. Rajput, Daizy & Herreros, Jose M. & Innocente, Mauro S. & Bryans, Jeremy & Schaub, Joschka & Dizqah, Arash M., 2022. "Impact of the number of planetary gears on the energy efficiency of electrified powertrains," Applied Energy, Elsevier, vol. 323(C).
    17. Wang, Siyang & Lin, Xianke, 2020. "Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios," Applied Energy, Elsevier, vol. 271(C).
    18. Wu, Yue & Huang, Zhiwu & Hofmann, Heath & Liu, Yongjie & Huang, Jiahao & Hu, Xiaosong & Peng, Jun & Song, Ziyou, 2022. "Hierarchical predictive control for electric vehicles with hybrid energy storage system under vehicle-following scenarios," Energy, Elsevier, vol. 251(C).
    19. Tang, Xiaolin & Zhou, Haitao & Wang, Feng & Wang, Weida & Lin, Xianke, 2022. "Longevity-conscious energy management strategy of fuel cell hybrid electric Vehicle Based on deep reinforcement learning," Energy, Elsevier, vol. 238(PA).
    20. Tran, Dai-Duong & Vafaeipour, Majid & El Baghdadi, Mohamed & Barrero, Ricardo & Van Mierlo, Joeri & Hegazy, Omar, 2020. "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    More about this item

    Keywords

    Catalyst; Fuel cell; Gasoline engine; H2 and fuel consumption; Hybrid vehicle;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:229:y:2021:i:c:s0360544221010343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.