IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2680-d1095792.html
   My bibliography  Save this article

Hydrogen Fuel Cell Power System—Development Perspectives for Hybrid Topologies

Author

Listed:
  • Guangjin Pan

    (School of Electrical Engineering & Automation, Harbin Institute of Technology at Weihai, Weihai 264200, China)

  • Yunpeng Bai

    (School of Electrical Engineering & Automation, Harbin Institute of Technology at Weihai, Weihai 264200, China
    Beijing Institute of Automatic Control Equipment, Beijing 100120, China)

  • Huihui Song

    (School of Electrical Engineering & Automation, Harbin Institute of Technology at Weihai, Weihai 264200, China)

  • Yanbin Qu

    (School of Electrical Engineering & Automation, Harbin Institute of Technology at Weihai, Weihai 264200, China)

  • Yang Wang

    (Beijing Institute of Automatic Control Equipment, Beijing 100120, China)

  • Xiaofei Wang

    (Beijing Institute of Automatic Control Equipment, Beijing 100120, China)

Abstract

In recent years, the problem of environmental pollution, especially the emission of greenhouse gases, has attracted people’s attention to energy infrastructure. At present, the fuel consumed by transportation mainly comes from fossil energy, and the strong traffic demand has a great impact on the environment and climate. Fuel cell electric vehicles (FCEVs) use hydrogen energy as a clean alternative to fossil fuels, taking into account the dual needs of transportation and environmental protection. However, due to the low power density and high manufacturing cost of hydrogen fuel cells, their combination with other power supplies is necessary to form a hybrid power system that maximizes the utilization of hydrogen energy and prolongs the service life of hydrogen fuel cells. Therefore, the hybrid power system control mode has become a key technology and a current research hotspot. This paper first briefly introduces hydrogen fuel cells, then summarizes the existing hybrid power circuit topology, categorizes the existing technical solutions, and finally looks forward to the future for different scenarios of hydrogen fuel cell hybrid power systems. This paper provides reference and guidance for the future development of renewable hydrogen energy and hydrogen fuel cell hybrid electric vehicles.

Suggested Citation

  • Guangjin Pan & Yunpeng Bai & Huihui Song & Yanbin Qu & Yang Wang & Xiaofei Wang, 2023. "Hydrogen Fuel Cell Power System—Development Perspectives for Hybrid Topologies," Energies, MDPI, vol. 16(6), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2680-:d:1095792
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2680/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2680/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huu Linh Nguyen & Jaesu Han & Hoang Nghia Vu & Sangseok Yu, 2022. "Investigation of Multiple Degradation Mechanisms of a Proton Exchange Membrane Fuel Cell under Dynamic Operation," Energies, MDPI, vol. 15(24), pages 1-21, December.
    2. Mohsen Kandidayeni & Alvaro Macias & Loïc Boulon & João Pedro F. Trovão, 2020. "Online Modeling of a Fuel Cell System for an Energy Management Strategy Design," Energies, MDPI, vol. 13(14), pages 1-17, July.
    3. Blal, Mohamed & Benatiallah, Ali & NeÇaibia, Ammar & Lachtar, Salah & Sahouane, Nordine & Belasri, Ahmed, 2019. "Contribution and investigation to compare models parameters of (PEMFC), comprehensives review of fuel cell models and their degradation," Energy, Elsevier, vol. 168(C), pages 182-199.
    4. Daniel Garraín & Santacruz Banacloche & Paloma Ferreira-Aparicio & Antonio Martínez-Chaparro & Yolanda Lechón, 2021. "Sustainability Indicators for the Manufacturing and Use of a Fuel Cell Prototype and Hydrogen Storage for Portable Uses," Energies, MDPI, vol. 14(20), pages 1-15, October.
    5. Mohamed Abdel-Basset & Reda Mohamed & Victor Chang, 2021. "An Efficient Parameter Estimation Algorithm for Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 14(21), pages 1-23, November.
    6. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    7. Noor H. Jawad & Ali Amer Yahya & Ali R. Al-Shathr & Hussein G. Salih & Khalid T. Rashid & Saad Al-Saadi & Adnan A. AbdulRazak & Issam K. Salih & Adel Zrelli & Qusay F. Alsalhy, 2022. "Fuel Cell Types, Properties of Membrane, and Operating Conditions: A Review," Sustainability, MDPI, vol. 14(21), pages 1-48, November.
    8. Ioan-Sorin Sorlei & Nicu Bizon & Phatiphat Thounthong & Mihai Varlam & Elena Carcadea & Mihai Culcer & Mariana Iliescu & Mircea Raceanu, 2021. "Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies," Energies, MDPI, vol. 14(1), pages 1-29, January.
    9. Tino Vidović & Ivan Tolj & Gojmir Radica & Natalia Bodrožić Ćoko, 2022. "Proton-Exchange Membrane Fuel Cell Balance of Plant and Performance Simulation for Vehicle Applications," Energies, MDPI, vol. 15(21), pages 1-14, October.
    10. Alexey Loskutov & Andrey Kurkin & Andrey Shalukho & Ivan Lipuzhin & Rustam Bedretdinov, 2022. "Investigation of PEM Fuel Cell Characteristics in Steady and Dynamic Operation Modes," Energies, MDPI, vol. 15(19), pages 1-19, September.
    11. Usman Asif & Klaus Schmidt, 2021. "Fuel Cell Electric Vehicles (FCEV): Policy Advances to Enhance Commercial Success," Sustainability, MDPI, vol. 13(9), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinghua Zhou & Qi Zhang & Jin Li, 2023. "Topology and Control of Fuel Cell Generation Converters," Energies, MDPI, vol. 16(11), pages 1-17, June.
    2. Victor Mercier & Adriano Ceschia & Toufik Azib & Cherif Larouci, 2023. "Pre-Sizing Approach of a Fuel Cell-Battery Hybrid Power System with Interleaved Converters," Energies, MDPI, vol. 16(10), pages 1-21, May.
    3. Adeola Akinpelu & Md Shafiul Alam & Md Shafiullah & Syed Masiur Rahman & Fahad Saleh Al-Ismail, 2023. "Greenhouse Gas Emission Dynamics of Saudi Arabia: Potential of Hydrogen Fuel for Emission Footprint Reduction," Sustainability, MDPI, vol. 15(7), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hegazy Rezk & A. G. Olabi & Tabbi Wilberforce & Enas Taha Sayed, 2023. "A Comprehensive Review and Application of Metaheuristics in Solving the Optimal Parameter Identification Problems," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    2. Jinghua Zhou & Qi Zhang & Jin Li, 2023. "Topology and Control of Fuel Cell Generation Converters," Energies, MDPI, vol. 16(11), pages 1-17, June.
    3. Rezk, Hegazy & Olabi, A.G. & Ferahtia, Seydali & Sayed, Enas Taha, 2022. "Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell," Energy, Elsevier, vol. 255(C).
    4. Chiara Dall’Armi & Davide Pivetta & Rodolfo Taccani, 2021. "Health-Conscious Optimization of Long-Term Operation for Hybrid PEMFC Ship Propulsion Systems," Energies, MDPI, vol. 14(13), pages 1-20, June.
    5. Aissa Benhammou & Mohammed Amine Hartani & Hamza Tedjini & Hegazy Rezk & Mujahed Al-Dhaifallah, 2023. "Improvement of Autonomy, Efficiency, and Stress of Fuel Cell Hybrid Electric Vehicle System Using Robust Controller," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    6. Hassan Qudrat-Ullah, 2022. "Adoption and Growth of Fuel Cell Vehicles in China: The Case of BYD," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
    7. Huu-Linh Nguyen & Sang-Min Lee & Sangseok Yu, 2023. "A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(12), pages 1-32, June.
    8. Emanuele Fedele & Luigi Pio Di Noia & Renato Rizzo, 2023. "Simple Loss Model of Battery Cables for Fast Transient Thermal Simulation," Energies, MDPI, vol. 16(7), pages 1-13, March.
    9. Ahmed Ginidi & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ragab El-Sehiemy, 2021. "An Innovative Hybrid Heap-Based and Jellyfish Search Algorithm for Combined Heat and Power Economic Dispatch in Electrical Grids," Mathematics, MDPI, vol. 9(17), pages 1-25, August.
    10. Hossein Shayeghi & Ali Seifi & Majid Hosseinpour & Nicu Bizon, 2022. "Developing a Generalized Multi-Level Inverter with Reduced Number of Power Electronics Components," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    11. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    12. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    13. Alessandra Perna & Mariagiovanna Minutillo & Simona Di Micco & Elio Jannelli, 2022. "Design and Costs Analysis of Hydrogen Refuelling Stations Based on Different Hydrogen Sources and Plant Configurations," Energies, MDPI, vol. 15(2), pages 1-22, January.
    14. Zhaowen Liang & Kai Liu & Jinjin Huang & Enfei Zhou & Chao Wang & Hui Wang & Qiong Huang & Zhenpo Wang, 2022. "Powertrain Design and Energy Management Strategy Optimization for a Fuel Cell Electric Intercity Coach in an Extremely Cold Mountain Area," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    15. Costa, C.M. & Barbosa, J.C. & Castro, H. & Gonçalves, R. & Lanceros-Méndez, S., 2021. "Electric vehicles: To what extent are environmentally friendly and cost effective? – Comparative study by european countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    17. Hyun Sung Kang & Myong-Hwan Kim & Yoon Hyuk Shin, 2020. "Thermodynamic Modeling and Performance Analysis of a Combined Power Generation System Based on HT-PEMFC and ORC," Energies, MDPI, vol. 13(23), pages 1-18, November.
    18. Damien Guilbert & Gianpaolo Vitale, 2021. "Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon," Clean Technol., MDPI, vol. 3(4), pages 1-29, December.
    19. Enyong Xu & Mengcheng Ma & Weiguang Zheng & Qibai Huang, 2023. "An Energy Management Strategy for Fuel-Cell Hybrid Commercial Vehicles Based on Adaptive Model Prediction," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    20. Jong-Wook Kim & Heungju Ahn & Hyeon Cheol Seo & Sang Cheol Lee, 2022. "Optimization of Solar/Fuel Cell Hybrid Energy System Using the Combinatorial Dynamic Encoding Algorithm for Searches (cDEAS)," Energies, MDPI, vol. 15(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2680-:d:1095792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.