IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3813-d581772.html
   My bibliography  Save this article

Health-Conscious Optimization of Long-Term Operation for Hybrid PEMFC Ship Propulsion Systems

Author

Listed:
  • Chiara Dall’Armi

    (Department of Engineering and Architecture, University of Trieste, via Valerio 10, 34127 Trieste, Italy)

  • Davide Pivetta

    (Department of Engineering and Architecture, University of Trieste, via Valerio 10, 34127 Trieste, Italy)

  • Rodolfo Taccani

    (Department of Engineering and Architecture, University of Trieste, via Valerio 10, 34127 Trieste, Italy)

Abstract

The need to decarbonize the shipping sector is leading to a growing interest in fuel cell-based propulsion systems. While Polymer Electrolyte Membrane Fuel Cells (PEMFC) represent one of the most promising and mature technologies for onboard implementation, they are still prone to remarkable degradation. The same problem is also affecting Lithium-ion batteries (LIB), which are usually coupled with PEMFC in hybrid powertrains. By including the combined degradation effects in an optimization strategy, the best compromise between costs and PEMFC/LIB lifetime could be determined. However, this is still a challenging yet crucial aspect, rarely addressed in the literature and rarely yet explored. To fill this gap, a health-conscious optimization is here proposed for the long-term minimization of costs and PEMFC/LIB degradation. Results show that a holistic multi-objective optimization allows a 185% increase of PEMFC/LIB lifetime with respect to a fuel-consumption-minimization-only approach. With the progressive ageing of PEMFC/LIB, the hybrid propulsion system modifies the energy management strategy to limit the increase of the daily operation cost. Comparing the optimization results at the beginning and the end of the plant lifetime, daily operation costs are increased by 73% and hydrogen consumption by 29%. The proposed methodology is believed to be a useful tool, able to give insights into the effective costs involved in the long-term operation of this new type of propulsion system.

Suggested Citation

  • Chiara Dall’Armi & Davide Pivetta & Rodolfo Taccani, 2021. "Health-Conscious Optimization of Long-Term Operation for Hybrid PEMFC Ship Propulsion Systems," Energies, MDPI, vol. 14(13), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3813-:d:581772
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3813/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3813/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Davide Pivetta & Sergio Rech & Andrea Lazzaretto, 2020. "Choice of the Optimal Design and Operation of Multi-Energy Conversion Systems in a Prosecco Wine Cellar," Energies, MDPI, vol. 13(23), pages 1-33, November.
    2. Rech, S. & Lazzaretto, A., 2018. "Smart rules and thermal, electric and hydro storages for the optimum operation of a renewable energy system," Energy, Elsevier, vol. 147(C), pages 742-756.
    3. Wu, Peng & Partridge, Julius & Bucknall, Richard, 2020. "Cost-effective reinforcement learning energy management for plug-in hybrid fuel cell and battery ships," Applied Energy, Elsevier, vol. 275(C).
    4. Amin Ghobadpour & Ali Amamou & Sousso Kelouwani & Nadjet Zioui & Lotfi Zeghmi, 2020. "Impact of Powertrain Components Size and Degradation Level on the Energy Management of a Hybrid Industrial Self-Guided Vehicle," Energies, MDPI, vol. 13(19), pages 1-20, September.
    5. Chen, Hui & Zhang, Zehui & Guan, Cong & Gao, Haibo, 2020. "Optimization of sizing and frequency control in battery/supercapacitor hybrid energy storage system for fuel cell ship," Energy, Elsevier, vol. 197(C).
    6. Yao He & Changchang Miao & Ji Wu & Xinxin Zheng & Xintian Liu & Xingtao Liu & Feng Han, 2021. "Research on the Power Distribution Method for Hybrid Power System in the Fuel Cell Vehicle," Energies, MDPI, vol. 14(3), pages 1-15, January.
    7. Mohsen Kandidayeni & Alvaro Macias & Loïc Boulon & João Pedro F. Trovão, 2020. "Online Modeling of a Fuel Cell System for an Energy Management Strategy Design," Energies, MDPI, vol. 13(14), pages 1-17, July.
    8. Ioan-Sorin Sorlei & Nicu Bizon & Phatiphat Thounthong & Mihai Varlam & Elena Carcadea & Mihai Culcer & Mariana Iliescu & Mircea Raceanu, 2021. "Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies," Energies, MDPI, vol. 14(1), pages 1-29, January.
    9. Jouin, Marine & Bressel, Mathieu & Morando, Simon & Gouriveau, Rafael & Hissel, Daniel & Péra, Marie-Cécile & Zerhouni, Noureddine & Jemei, Samir & Hilairet, Mickael & Ould Bouamama, Belkacem, 2016. "Estimating the end-of-life of PEM fuel cells: Guidelines and metrics," Applied Energy, Elsevier, vol. 177(C), pages 87-97.
    10. Sergio Rech, 2019. "Smart Energy Systems: Guidelines for Modelling and Optimizing a Fleet of Units of Different Configurations," Energies, MDPI, vol. 12(7), pages 1-36, April.
    11. Chen, Huicui & Pei, Pucheng & Song, Mancun, 2015. "Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells," Applied Energy, Elsevier, vol. 142(C), pages 154-163.
    12. Sadia Anwar & Muhammad Yousuf Irfan Zia & Muhammad Rashid & Gerardo Zarazua de Rubens & Peter Enevoldsen, 2020. "Towards Ferry Electrification in the Maritime Sector," Energies, MDPI, vol. 13(24), pages 1-22, December.
    13. Tom Fletcher & Kambiz Ebrahimi, 2020. "The Effect of Fuel Cell and Battery Size on Efficiency and Cell Lifetime for an L7e Fuel Cell Hybrid Vehicle," Energies, MDPI, vol. 13(22), pages 1-18, November.
    14. Jianying Liang & Yankun Li & Wenya Jia & Weikang Lin & Tiancai Ma, 2021. "Comparison of Two Energy Management Strategies Considering Power System Durability for PEMFC-LIB Hybrid Logistics Vehicle," Energies, MDPI, vol. 14(11), pages 1-24, June.
    15. Lorenzo, Charles & Bouquain, David & Hibon, Samuel & Hissel, Daniel, 2021. "Synthesis of degradation mechanisms and of their impacts on degradation rates on proton-exchange membrane fuel cells and lithium-ion nickel–manganese–cobalt batteries in hybrid transport applicati," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiara Dall’Armi & Davide Pivetta & Rodolfo Taccani, 2023. "Hybrid PEM Fuel Cell Power Plants Fuelled by Hydrogen for Improving Sustainability in Shipping: State of the Art and Review on Active Projects," Energies, MDPI, vol. 16(4), pages 1-34, February.
    2. Andrea Vicenzutti & Giorgio Sulligoi, 2021. "Electrical and Energy Systems Integration for Maritime Environment-Friendly Transportation," Energies, MDPI, vol. 14(21), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiara Dall’Armi & Davide Pivetta & Rodolfo Taccani, 2023. "Hybrid PEM Fuel Cell Power Plants Fuelled by Hydrogen for Improving Sustainability in Shipping: State of the Art and Review on Active Projects," Energies, MDPI, vol. 16(4), pages 1-34, February.
    2. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    3. Ma, Rui & Yang, Tao & Breaz, Elena & Li, Zhongliang & Briois, Pascal & Gao, Fei, 2018. "Data-driven proton exchange membrane fuel cell degradation predication through deep learning method," Applied Energy, Elsevier, vol. 231(C), pages 102-115.
    4. Xie, Peilin & Tan, Sen & Bazmohammadi, Najmeh & Guerrero, Josep. M. & Vasquez, Juan. C. & Alcala, Jose Matas & Carreño, Jorge El Mariachet, 2022. "A distributed real-time power management scheme for shipboard zonal multi-microgrid system," Applied Energy, Elsevier, vol. 317(C).
    5. Mumin Rao & Li Wang & Chuangting Chen & Kai Xiong & Mingfei Li & Zhengpeng Chen & Jiangbo Dong & Junli Xu & Xi Li, 2022. "Data-Driven State Prediction and Analysis of SOFC System Based on Deep Learning Method," Energies, MDPI, vol. 15(9), pages 1-15, April.
    6. Tom Fletcher & Kambiz Ebrahimi, 2020. "The Effect of Fuel Cell and Battery Size on Efficiency and Cell Lifetime for an L7e Fuel Cell Hybrid Vehicle," Energies, MDPI, vol. 13(22), pages 1-18, November.
    7. Macias, A. & Kandidayeni, M. & Boulon, L. & Trovão, J.P., 2021. "Fuel cell-supercapacitor topologies benchmark for a three-wheel electric vehicle powertrain," Energy, Elsevier, vol. 224(C).
    8. He, Wenbin & Liu, Ting & Ming, Wuyi & Li, Zongze & Du, Jinguang & Li, Xiaoke & Guo, Xudong & Sun, Peiyan, 2024. "Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    9. Lazzaretto, Andrea & Masi, Massimo & Rech, Sergio & Carraro, Gianluca & Danieli, Piero & Volpato, Gabriele & Dal Cin, Enrico, 2024. "From exergoeconomics to Thermo-X Optimization in the transition to sustainable energy systems," Energy, Elsevier, vol. 304(C).
    10. Ke Song & Yimin Wang & Xiao Hu & Jing Cao, 2020. "Online Prediction of Vehicular Fuel Cell Residual Lifetime Based on Adaptive Extended Kalman Filter," Energies, MDPI, vol. 13(23), pages 1-21, November.
    11. Changqing Du & Shiyang Huang & Yuyao Jiang & Dongmei Wu & Yang Li, 2022. "Optimization of Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Based on Dynamic Programming," Energies, MDPI, vol. 15(12), pages 1-25, June.
    12. Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    13. Davide Pivetta & Sergio Rech & Andrea Lazzaretto, 2020. "Choice of the Optimal Design and Operation of Multi-Energy Conversion Systems in a Prosecco Wine Cellar," Energies, MDPI, vol. 13(23), pages 1-33, November.
    14. Shan-Jen Cheng & Wen-Ken Li & Te-Jen Chang & Chang-Hung Hsu, 2021. "Data-Driven Prognostics of the SOFC System Based on Dynamic Neural Network Models," Energies, MDPI, vol. 14(18), pages 1-17, September.
    15. Lorenzo, Charles & Bouquain, David & Hibon, Samuel & Hissel, Daniel, 2021. "Synthesis of degradation mechanisms and of their impacts on degradation rates on proton-exchange membrane fuel cells and lithium-ion nickel–manganese–cobalt batteries in hybrid transport applicati," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    16. Pei, Pucheng & Chen, Dongfang & Wu, Ziyao & Ren, Peng, 2019. "Nonlinear methods for evaluating and online predicting the lifetime of fuel cells," Applied Energy, Elsevier, vol. 254(C).
    17. Zhang, Ruiyuan & Min, Ting & Chen, Li & Kang, Qinjun & He, Ya-Ling & Tao, Wen-Quan, 2019. "Pore-scale and multiscale study of effects of Pt degradation on reactive transport processes in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Huu-Linh Nguyen & Sang-Min Lee & Sangseok Yu, 2023. "A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(12), pages 1-32, June.
    19. Guangjin Pan & Yunpeng Bai & Huihui Song & Yanbin Qu & Yang Wang & Xiaofei Wang, 2023. "Hydrogen Fuel Cell Power System—Development Perspectives for Hybrid Topologies," Energies, MDPI, vol. 16(6), pages 1-16, March.
    20. Peng, Jiankun & Shen, Yang & Wu, ChangCheng & Wang, Chunhai & Yi, Fengyan & Ma, Chunye, 2023. "Research on energy-saving driving control of hydrogen fuel bus based on deep reinforcement learning in freeway ramp weaving area," Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3813-:d:581772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.