IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8110-d959095.html
   My bibliography  Save this article

Proton-Exchange Membrane Fuel Cell Balance of Plant and Performance Simulation for Vehicle Applications

Author

Listed:
  • Tino Vidović

    (Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, R. Boškovića 32, 21000 Split, Croatia)

  • Ivan Tolj

    (Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, R. Boškovića 32, 21000 Split, Croatia)

  • Gojmir Radica

    (Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, R. Boškovića 32, 21000 Split, Croatia)

  • Natalia Bodrožić Ćoko

    (Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, R. Boškovića 32, 21000 Split, Croatia)

Abstract

In this study, a newly developed zero-dimensional electrochemical model was used for modeling and controlling proton-exchange membrane fuel cell (PEMFC) performance. Calibration of the model was performed with measurements from the fuel cell stack. Subsequently, a compressor and a humidifier on the cathode side were sized and added to the existing model. The aim of this work was to model the PEMFC stack and balance of plant (BoP) components in detail to show the influence of operating parameters such as cathode pressure, stack temperature and cathode stoichiometric ratio on the performance and efficiency of the overall system compared to the original model using a newly developed real-time model. The model managed to predict the profile of essential parameters, such as temperature, pressure, power, voltage, etc. The most important conclusions from this particular case are: the cell power output is only slightly changed with the variations in stoichiometric ratio of the cathode side and adding an external compressor is valid only for high current applications, but in those cases, there is 10–22% power gain. Stack temperature is a very influential parameter. Optimal temperatures were determined through design of experiments (DoE) and for this case are in the 40–60 °C range, where for low current applications lower temperatures are better due lower activation loss (8% difference between 80 °C and 40 °C at 20 A current). For high current applications, due to lower ohmic losses, higher temperatures are desirable.

Suggested Citation

  • Tino Vidović & Ivan Tolj & Gojmir Radica & Natalia Bodrožić Ćoko, 2022. "Proton-Exchange Membrane Fuel Cell Balance of Plant and Performance Simulation for Vehicle Applications," Energies, MDPI, vol. 15(21), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8110-:d:959095
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ayikoe Tettey, Uniben Yao & Gustavsson, Leif, 2020. "Energy savings and overheating risk of deep energy renovation of a multi-storey residential building in a cold climate under climate change," Energy, Elsevier, vol. 202(C).
    2. Sara Luciani & Andrea Tonoli, 2022. "Control Strategy Assessment for Improving PEM Fuel Cell System Efficiency in Fuel Cell Hybrid Vehicles," Energies, MDPI, vol. 15(6), pages 1-17, March.
    3. Tabbi Wilberforce & Abdul Ghani Olabi, 2020. "Design of Experiment (DOE) Analysis of 5-Cell Stack Fuel Cell Using Three Bipolar Plate Geometry Designs," Sustainability, MDPI, vol. 12(11), pages 1-23, June.
    4. Tabbi Wilberforce & Abdul Ghani Olabi, 2020. "Performance Prediction of Proton Exchange Membrane Fuel Cells (PEMFC) Using Adaptive Neuro Inference System (ANFIS)," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    5. Böhringer, Christoph, 2003. "The Kyoto Protocol: A Review and Perspectives," ZEW Discussion Papers 03-61, ZEW - Leibniz Centre for European Economic Research.
    6. Hanif, Imran & Faraz Raza, Syed Muhammad & Gago-de-Santos, Pilar & Abbas, Qaiser, 2019. "Fossil fuels, foreign direct investment, and economic growth have triggered CO2 emissions in emerging Asian economies: Some empirical evidence," Energy, Elsevier, vol. 171(C), pages 493-501.
    7. Juan C. González Palencia & Van Tuan Nguyen & Mikiya Araki & Seiichi Shiga, 2020. "The Role of Powertrain Electrification in Achieving Deep Decarbonization in Road Freight Transport," Energies, MDPI, vol. 13(10), pages 1-24, May.
    8. Ioan-Sorin Sorlei & Nicu Bizon & Phatiphat Thounthong & Mihai Varlam & Elena Carcadea & Mihai Culcer & Mariana Iliescu & Mircea Raceanu, 2021. "Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies," Energies, MDPI, vol. 14(1), pages 1-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mokhtar Aly & Emad A. Mohamed & Hegazy Rezk & Ahmed M. Nassef & Mostafa A. Elhosseini & Ahmed Shawky, 2023. "An Improved Optimally Designed Fuzzy Logic-Based MPPT Method for Maximizing Energy Extraction of PEMFC in Green Buildings," Energies, MDPI, vol. 16(3), pages 1-23, January.
    2. Guangjin Pan & Yunpeng Bai & Huihui Song & Yanbin Qu & Yang Wang & Xiaofei Wang, 2023. "Hydrogen Fuel Cell Power System—Development Perspectives for Hybrid Topologies," Energies, MDPI, vol. 16(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    2. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    3. Giuseppe De Lorenzo & Francesco Piraino & Francesco Longo & Giovanni Tinè & Valeria Boscaino & Nicola Panzavecchia & Massimo Caccia & Petronilla Fragiacomo, 2022. "Modelling and Performance Analysis of an Autonomous Marine Vehicle Powered by a Fuel Cell Hybrid Powertrain," Energies, MDPI, vol. 15(19), pages 1-21, September.
    4. Khadijeh Hooshyari & Bahman Amini Horri & Hamid Abdoli & Mohsen Fallah Vostakola & Parvaneh Kakavand & Parisa Salarizadeh, 2021. "A Review of Recent Developments and Advanced Applications of High-Temperature Polymer Electrolyte Membranes for PEM Fuel Cells," Energies, MDPI, vol. 14(17), pages 1-38, September.
    5. A.G. Olabi & Tabbi Wilberforce & Enas Taha Sayed & Khaled Elsaid & Mohammad Ali Abdelkareem, 2020. "Prospects of Fuel Cell Combined Heat and Power Systems," Energies, MDPI, vol. 13(16), pages 1-20, August.
    6. Wojciech Cieslik & Filip Szwajca & Jedrzej Zawartowski & Katarzyna Pietrzak & Slawomir Rosolski & Kamil Szkarlat & Michal Rutkowski, 2021. "Capabilities of Nearly Zero Energy Building (nZEB) Electricity Generation to Charge Electric Vehicle (EV) Operating in Real Driving Conditions (RDC)," Energies, MDPI, vol. 14(22), pages 1-22, November.
    7. Abed Alaswad & Abdelnasir Omran & Jose Ricardo Sodre & Tabbi Wilberforce & Gianmichelle Pignatelli & Michele Dassisti & Ahmad Baroutaji & Abdul Ghani Olabi, 2020. "Technical and Commercial Challenges of Proton-Exchange Membrane (PEM) Fuel Cells," Energies, MDPI, vol. 14(1), pages 1-21, December.
    8. Valery Vodovozov & Zoja Raud & Eduard Petlenkov, 2022. "Review of Energy Challenges and Horizons of Hydrogen City Buses," Energies, MDPI, vol. 15(19), pages 1-27, September.
    9. Emanuele Fedele & Luigi Pio Di Noia & Renato Rizzo, 2023. "Simple Loss Model of Battery Cables for Fast Transient Thermal Simulation," Energies, MDPI, vol. 16(7), pages 1-13, March.
    10. Liu, Yaping & Sadiq, Farah & Ali, Wajahat & Kumail, Tafazal, 2022. "Does tourism development, energy consumption, trade openness and economic growth matters for ecological footprint: Testing the Environmental Kuznets Curve and pollution haven hypothesis for Pakistan," Energy, Elsevier, vol. 245(C).
    11. Casari, Marco & Tavoni, Alessandro, 2024. "Climate clubs in the laboratory," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 110(C).
    12. Tomiwa Sunday Adebayo & Abraham Ayobamiji Awosusi & Seun Damola Oladipupo & Ephraim Bonah Agyekum & Arunkumar Jayakumar & Nallapaneni Manoj Kumar, 2021. "Dominance of Fossil Fuels in Japan’s National Energy Mix and Implications for Environmental Sustainability," IJERPH, MDPI, vol. 18(14), pages 1-20, July.
    13. Hayat Khan & Liu Weili & Itbar Khan, 2022. "Environmental innovation, trade openness and quality institutions: an integrated investigation about environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3832-3862, March.
    14. Wilman-Santiago Ochoa-Moreno & Byron Alejandro Quito & Carlos Andrés Moreno-Hurtado, 2021. "Foreign Direct Investment and Environmental Quality: Revisiting the EKC in Latin American Countries," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    15. Guangxiong Mao & Wei Jin & Ying Zhu & Yanjun Mao & Wei-Ling Hsu & Hsin-Lung Liu, 2021. "Environmental Pollution Effects of Regional Industrial Transfer Illustrated with Jiangsu, China," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    16. Jie Zhang & Majed Alharthi & Qaiser Abbas & Weiqing Li & Muhammad Mohsin & Khan Jamal & Farhad Taghizadeh-Hesary, 2020. "Reassessing the Environmental Kuznets Curve in Relation to Energy Efficiency and Economic Growth," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
    17. Hossein Pourrahmani & Hamed Shakeri & Jan Van herle, 2022. "Thermoelectric Generator as the Waste Heat Recovery Unit of Proton Exchange Membrane Fuel Cell: A Numerical Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    18. Qiang Wang & Yuanfan Li & Rongrong Li, 2024. "Rethinking the environmental Kuznets curve hypothesis across 214 countries: the impacts of 12 economic, institutional, technological, resource, and social factors," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    19. Usman, Muhammad & Khalid, Khaizran & Mehdi, Muhammad Abuzar, 2021. "What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization," Renewable Energy, Elsevier, vol. 168(C), pages 1165-1176.
    20. Rashid Khan, Haroon Ur & Islam, Talat & Yousaf, Sheikh Usman & Zaman, Khalid & Shoukry, Alaa Mohamd & Sharkawy, Mohamed A. & Gani, Showkat & Aamir, Alamzeb & Hishan, Sanil S., 2019. "The impact of financial development indicators on natural resource markets: Evidence from two-step GMM estimator," Resources Policy, Elsevier, vol. 62(C), pages 240-255.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8110-:d:959095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.