IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11253-d909994.html
   My bibliography  Save this article

Powertrain Design and Energy Management Strategy Optimization for a Fuel Cell Electric Intercity Coach in an Extremely Cold Mountain Area

Author

Listed:
  • Zhaowen Liang

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
    Technical Research Institute, Beijing Foton AUV New Energy Bus Co., Ltd., Beijing 102200, China)

  • Kai Liu

    (Technical Research Institute, Beijing Foton AUV New Energy Bus Co., Ltd., Beijing 102200, China)

  • Jinjin Huang

    (Technical Research Institute, Beijing Foton AUV New Energy Bus Co., Ltd., Beijing 102200, China)

  • Enfei Zhou

    (Technical Research Institute, Beijing Foton AUV New Energy Bus Co., Ltd., Beijing 102200, China)

  • Chao Wang

    (Technical Research Institute, Beijing Foton AUV New Energy Bus Co., Ltd., Beijing 102200, China)

  • Hui Wang

    (Technical Research Institute, Beijing Foton AUV New Energy Bus Co., Ltd., Beijing 102200, China)

  • Qiong Huang

    (School of Mathematic and Statistics, Liaoning University, Shenyang 110036, China)

  • Zhenpo Wang

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

Abstract

Facing the challenge that the single-motor electric drive powertrain cannot meet the continuous uphill requirements in the cold mountainous area of the 2022 Beijing Winter Olympics, the manuscript adopted a dual-motor coupling technology. Then, according to the operating characteristics and performance indicators of the fuel cell (FC)–traction battery hybrid power system, the structure design and parameter matching of the vehicle power system architecture were carried out to improve the vehicle’s dynamic performance. Furthermore, considering the extremely cold conditions in the Winter Olympics competition area and the poor low-temperature tolerance of core components of fuel cell electric vehicles (FCEV) under extremely cold conditions, such as the reduced capacity and service life of traction batteries caused by the rapid deterioration of charging and discharging characteristics, the manuscript proposed a fuzzy logic control-based energy management strategy (EMS) optimization method for the proton exchange membrane fuel cell (PEMFC), to reduce the power fluctuation, hydrogen consumption and battery charging/discharging times, and at the same time, to ensure the hybrid power system meets the varying demand under different conditions. In addition, the performance of the proposed approach was investigated and validated in an intercity coach in real-world driving conditions. The experimental results show that the proposed powertrain with an optimal control strategy successfully alleviated the fluctuation of vehicle power demand, reduced the battery charging/discharging times of traction battery, and improved the energy efficiency by 20.7%. The research results of this manuscript are of great significance for the future promotion and application of fuel cell electric coaches in all climate environments, especially in an extremely cold mountain area.

Suggested Citation

  • Zhaowen Liang & Kai Liu & Jinjin Huang & Enfei Zhou & Chao Wang & Hui Wang & Qiong Huang & Zhenpo Wang, 2022. "Powertrain Design and Energy Management Strategy Optimization for a Fuel Cell Electric Intercity Coach in an Extremely Cold Mountain Area," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11253-:d:909994
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Soohwan & Jeong, Hoyoung & Lee, Hoseong, 2021. "Cold-start performance investigation of fuel cell electric vehicles with heat pump-assisted thermal management systems," Energy, Elsevier, vol. 232(C).
    2. Shi, Junzhe & Xu, Bin & Shen, Yimin & Wu, Jingbo, 2022. "Energy management strategy for battery/supercapacitor hybrid electric city bus based on driving pattern recognition," Energy, Elsevier, vol. 243(C).
    3. Song, Zhen & Pan, Yue & Chen, Huicui & Zhang, Tong, 2021. "Effects of temperature on the performance of fuel cell hybrid electric vehicles: A review," Applied Energy, Elsevier, vol. 302(C).
    4. Meng, Junhui & Ma, Nuo & Meng, Fanmin & Zhang, Xiaohui & Liu, Li, 2022. "Energy management strategy of hybrid energy system for a multi-lobes hybrid air vehicle," Energy, Elsevier, vol. 255(C).
    5. Xun, Qian & Murgovski, Nikolce & Liu, Yujing, 2022. "Chance-constrained robust co-design optimization for fuel cell hybrid electric trucks," Applied Energy, Elsevier, vol. 320(C).
    6. Yao, Jiwei & You, Fengqi, 2020. "Simulation-based optimization framework for economic operations of autonomous electric taxicab considering battery aging," Applied Energy, Elsevier, vol. 279(C).
    7. Ettihir, K. & Boulon, L. & Agbossou, K., 2016. "Optimization-based energy management strategy for a fuel cell/battery hybrid power system," Applied Energy, Elsevier, vol. 163(C), pages 142-153.
    8. Usman Asif & Klaus Schmidt, 2021. "Fuel Cell Electric Vehicles (FCEV): Policy Advances to Enhance Commercial Success," Sustainability, MDPI, vol. 13(9), pages 1-12, May.
    9. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    10. Hamed Jafari Kaleybar & Morris Brenna & Huan Li & Dario Zaninelli, 2022. "Fuel Cell Hybrid Locomotive with Modified Fuzzy Logic Based Energy Management System," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    11. Fathy, Ahmed & Yousri, Dalia & Alanazi, Turki & Rezk, Hegazy, 2021. "Minimum hydrogen consumption based control strategy of fuel cell/PV/battery/supercapacitor hybrid system using recent approach based parasitism-predation algorithm," Energy, Elsevier, vol. 225(C).
    12. Iqbal, Mehroze & Becherif, Mohamed & Ramadan, Haitham S. & Badji, Abderrezak, 2021. "Dual-layer approach for systematic sizing and online energy management of fuel cell hybrid vehicles," Applied Energy, Elsevier, vol. 300(C).
    13. Aihua Tang & Yuanhang Yang & Quanqing Yu & Zhigang Zhang & Lin Yang, 2022. "A Review of Life Prediction Methods for PEMFCs in Electric Vehicles," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badji, Abderrezak & Abdeslam, Djaffar Ould & Chabane, Djafar & Benamrouche, Nacereddine, 2022. "Real-time implementation of improved power frequency approach based energy management of fuel cell electric vehicle considering storage limitations," Energy, Elsevier, vol. 249(C).
    2. Zou, Weitao & Li, Jianwei & Yang, Qingqing & Wan, Xinming & He, Yuntang & Lan, Hao, 2023. "A real-time energy management approach with fuel cell and battery competition-synergy control for the fuel cell vehicle," Applied Energy, Elsevier, vol. 334(C).
    3. Anselma, Pier Giuseppe & Belingardi, Giovanni, 2022. "Fuel cell electrified propulsion systems for long-haul heavy-duty trucks: present and future cost-oriented sizing," Applied Energy, Elsevier, vol. 321(C).
    4. Sandoval, Cinda & Alvarado, Victor M. & Carmona, Jean-Claude & Lopez Lopez, Guadalupe & Gomez-Aguilar, J.F., 2017. "Energy management control strategy to improve the FC/SC dynamic behavior on hybrid electric vehicles: A frequency based distribution," Renewable Energy, Elsevier, vol. 105(C), pages 407-418.
    5. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    6. Chen, Xu & Li, Mince & Chen, Zonghai, 2023. "Meta rule-based energy management strategy for battery/supercapacitor hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    7. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    8. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Yu, Xiao & Lin, Cheng & Tian, Yu & Zhao, Mingjie & Liu, Huimin & Xie, Peng & Zhang, JunZhi, 2023. "Real-time and hierarchical energy management-control framework for electric vehicles with dual-motor powertrain system," Energy, Elsevier, vol. 272(C).
    10. Lopez Lopez, Guadalupe & Schacht Rodriguez, Ricardo & Alvarado, Victor M. & Gomez-Aguilar, J.F. & Mota, Juan E. & Sandoval, Cinda, 2017. "Hybrid PEMFC-supercapacitor system: Modeling and energy management in energetic macroscopic representation," Applied Energy, Elsevier, vol. 205(C), pages 1478-1494.
    11. Barouch Giechaskiel & Dimitrios Komnos & Georgios Fontaras, 2021. "Impacts of Extreme Ambient Temperatures and Road Gradient on Energy Consumption and CO 2 Emissions of a Euro 6d-Temp Gasoline Vehicle," Energies, MDPI, vol. 14(19), pages 1-20, September.
    12. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    13. Jiang, Hongliang & Xu, Liangfei & Li, Jianqiu & Hu, Zunyan & Ouyang, Minggao, 2019. "Energy management and component sizing for a fuel cell/battery/supercapacitor hybrid powertrain based on two-dimensional optimization algorithms," Energy, Elsevier, vol. 177(C), pages 386-396.
    14. Alessandra Perna & Mariagiovanna Minutillo & Simona Di Micco & Elio Jannelli, 2022. "Design and Costs Analysis of Hydrogen Refuelling Stations Based on Different Hydrogen Sources and Plant Configurations," Energies, MDPI, vol. 15(2), pages 1-22, January.
    15. Nicu Bizon & Alin Gheorghita Mazare & Laurentiu Mihai Ionescu & Phatiphat Thounthong & Erol Kurt & Mihai Oproescu & Gheorghe Serban & Ioan Lita, 2019. "Better Fuel Economy by Optimizing Airflow of the Fuel Cell Hybrid Power Systems Using Fuel Flow-Based Load-Following Control," Energies, MDPI, vol. 12(14), pages 1-17, July.
    16. Wu, Jinglai & Zhang, Yunqing & Ruan, Jiageng & Liang, Zhaowen & Liu, Kai, 2023. "Rule and optimization combined real-time energy management strategy for minimizing cost of fuel cell hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    17. Jingna Kou & Wei Li & Rui Zhang & Dingxiong Shi, 2023. "Hydrogen as a Transition Tool in a Fossil Fuel Resource Region: Taking China’s Coal Capital Shanxi as an Example," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    18. Zong, Fang & Li, Yu-Xuan & Zeng, Meng, 2023. "Developing a carbon emission charging scheme considering mobility as a service," Energy, Elsevier, vol. 267(C).
    19. Lombardi, Simone & Di Ilio, Giovanni & Tribioli, Laura & Jannelli, Elio, 2023. "Optimal design of an adaptive energy management strategy for a fuel cell tractor operating in ports," Applied Energy, Elsevier, vol. 352(C).
    20. Mehroze Iqbal & Amel Benmouna & Frederic Claude & Mohamed Becherif, 2023. "Efficient and Reliable Power-Conditioning Stage for Fuel Cell-Based High-Power Applications," Energies, MDPI, vol. 16(13), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11253-:d:909994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.