IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2307-d1082567.html
   My bibliography  Save this article

A Comprehensive Review of Shipboard Power Systems with New Energy Sources

Author

Listed:
  • He Yin

    (Yantai Research Institute of Harbin Engineering University, Yantai 264000, China)

  • Hai Lan

    (College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China)

  • Ying-Yi Hong

    (Department of Electrical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan)

  • Zhuangwei Wang

    (Yantai Research Institute of Harbin Engineering University, Yantai 264000, China)

  • Peng Cheng

    (College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China)

  • Dan Li

    (Yantai Research Institute of Harbin Engineering University, Yantai 264000, China)

  • Dong Guo

    (Yantai Research Institute of Harbin Engineering University, Yantai 264000, China)

Abstract

A new energy ship is being developed to address energy shortages and greenhouse gas emissions. New energy ships feature low operational costs and zero emissions. This study discusses the characteristics and development of solar-powered ships, wind-powered ships, fuel cell-powered ships, and new energy hybrid ships. Three important technologies are used for the power system of the new energy ship: new-energy spatio-temporal prediction, ship power scheduling, and Digital Twin (DT). Research shows that new energy spatio-temporal prediction reduces the uncertainty for a ship power system. Ship power scheduling technology guarantees safety and low-carbon operation for the ship. DT simulates the navigational environment for the new energy ship to characterize the boundary of the shipboard’s new energy power generation. The future technical direction for new energy ship power systems is also being discussed.

Suggested Citation

  • He Yin & Hai Lan & Ying-Yi Hong & Zhuangwei Wang & Peng Cheng & Dan Li & Dong Guo, 2023. "A Comprehensive Review of Shipboard Power Systems with New Energy Sources," Energies, MDPI, vol. 16(5), pages 1-44, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2307-:d:1082567
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rui Yang & Yupeng Yuan & Rushun Ying & Boyang Shen & Teng Long, 2020. "A Novel Energy Management Strategy for a Ship’s Hybrid Solar Energy Generation System Using a Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 13(6), pages 1-14, March.
    2. Kamble, Sachin S & Gunasekaran, Angappa & Parekh, Harsh & Mani, Venkatesh & Belhadi, Amine & Sharma, Rohit, 2022. "Digital twin for sustainable manufacturing supply chains: Current trends, future perspectives, and an implementation framework," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    3. Zheng, Jianqin & Zhang, Haoran & Dai, Yuanhao & Wang, Bohong & Zheng, Taicheng & Liao, Qi & Liang, Yongtu & Zhang, Fengwei & Song, Xuan, 2020. "Time series prediction for output of multi-region solar power plants," Applied Energy, Elsevier, vol. 257(C).
    4. Kwang-Il Kim & Keon Myung Lee, 2018. "Dynamic Programming-Based Vessel Speed Adjustment for Energy Saving and Emission Reduction," Energies, MDPI, vol. 11(5), pages 1-15, May.
    5. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    6. Wang, Fei & Chen, Peng & Zhen, Zhao & Yin, Rui & Cao, Chunmei & Zhang, Yagang & Duić, Neven, 2022. "Dynamic spatio-temporal correlation and hierarchical directed graph structure based ultra-short-term wind farm cluster power forecasting method," Applied Energy, Elsevier, vol. 323(C).
    7. Lan, Hai & Yin, He & Hong, Ying-Yi & Wen, Shuli & Yu, David C. & Cheng, Peng, 2018. "Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route," Applied Energy, Elsevier, vol. 211(C), pages 15-27.
    8. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    9. Wenjia Xia & Qihe Shan & Geyang Xiao & Yonggang Tu & Yuan Liang, 2022. "Distributed Optimization of Joint Seaport-All-Electric-Ships System under Polymorphic Network," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    10. Tang, Ruoli & Li, Xin & Lai, Jingang, 2018. "A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization," Applied Energy, Elsevier, vol. 228(C), pages 254-264.
    11. Xwégnon Ghislain Agoua & Robin Girard & Georges Kariniotakis, 2021. "Photovoltaic Power Forecasting: Assessment of the Impact of Multiple Sources of Spatio-Temporal Data on Forecast Accuracy," Energies, MDPI, vol. 14(5), pages 1-15, March.
    12. Fan, Feilong & Aditya, Venkataraman & Xu, Yan & Cheong, Benjamin & Gupta, Amit K., 2022. "Robustly coordinated operation of a ship microgird with hybrid propulsion systems and hydrogen fuel cells," Applied Energy, Elsevier, vol. 312(C).
    13. Huang, Yuqing & Lan, Hai & Hong, Ying-Yi & Wen, Shuli & Fang, Sidun, 2020. "Joint voyage scheduling and economic dispatch for all-electric ships with virtual energy storage systems," Energy, Elsevier, vol. 190(C).
    14. Rafael E. Carrillo & Martin Leblanc & Baptiste Schubnel & Renaud Langou & Cyril Topfel & Pierre-Jean Alet, 2020. "High-Resolution PV Forecasting from Imperfect Data: A Graph-Based Solution," Energies, MDPI, vol. 13(21), pages 1-17, November.
    15. Tomasz Kisielewicz & Milton Cuenca, 2022. "Overview of Transient Simulations of Grounding Systems under Surge Conditions," Energies, MDPI, vol. 15(20), pages 1-17, October.
    16. Hyun-Keun Ku & Chang-Hwan Park & Jang-Mok Kim, 2022. "Full Simulation Modeling of All-Electric Ship with Medium Voltage DC Power System," Energies, MDPI, vol. 15(12), pages 1-16, June.
    17. Wang, Kai & Xue, Yu & Xu, Hao & Huang, Lianzhong & Ma, Ranqi & Zhang, Peng & Jiang, Xiaoli & Yuan, Yupeng & Negenborn, Rudy R. & Sun, Peiting, 2022. "Joint energy consumption optimization method for wing-diesel engine-powered hybrid ships towards a more energy-efficient shipping," Energy, Elsevier, vol. 245(C).
    18. Xu, Lei & Wen, Yintang & Luo, Xiaoyuan & Lu, Zhigang & Guan, Xinping, 2022. "A modified power management algorithm with energy efficiency and GHG emissions limitation for hybrid power ship system," Applied Energy, Elsevier, vol. 317(C).
    19. André, Maïna & Dabo-Niang, Sophie & Soubdhan, Ted & Ould-Baba, Hanany, 2016. "Predictive spatio-temporal model for spatially sparse global solar radiation data," Energy, Elsevier, vol. 111(C), pages 599-608.
    20. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    21. Geng, Xiulin & Xu, Lingyu & He, Xiaoyu & Yu, Jie, 2021. "Graph optimization neural network with spatio-temporal correlation learning for multi-node offshore wind speed forecasting," Renewable Energy, Elsevier, vol. 180(C), pages 1014-1025.
    22. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
    23. Nam, SeungBeom & Hur, Jin, 2019. "A hybrid spatio-temporal forecasting of solar generating resources for grid integration," Energy, Elsevier, vol. 177(C), pages 503-510.
    24. Nikodinoska, Dragana & Käso, Mathias & Müsgens, Felix, 2022. "Solar and wind power generation forecasts using elastic net in time-varying forecast combinations," Applied Energy, Elsevier, vol. 306(PA).
    25. Liu, Yongqi & Qin, Hui & Zhang, Zhendong & Pei, Shaoqian & Wang, Chao & Yu, Xiang & Jiang, Zhiqiang & Zhou, Jianzhong, 2019. "Ensemble spatiotemporal forecasting of solar irradiation using variational Bayesian convolutional gate recurrent unit network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    26. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    27. Tang, Ruoli & Wu, Zhou & Li, Xin, 2018. "Optimal operation of photovoltaic/battery/diesel/cold-ironing hybrid energy system for maritime application," Energy, Elsevier, vol. 162(C), pages 697-714.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouyang, Tiancheng & Pan, Mingming & Tan, Xianlin & Li, Lulu & Huang, Youbin & Mo, Chunlan, 2024. "Power prediction and packed bed heat storage control for marine diesel engine waste heat recovery," Applied Energy, Elsevier, vol. 357(C).
    2. Michail Serris & Paraskevi Petrou & Isidoros Iakovidis & Sotiria Dimitrellou, 2023. "Techno-Economic and Environmental Evaluation of a Solar Energy System on a Ro-Ro Vessel for Sustainability," Energies, MDPI, vol. 16(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Llinet Benavides Cesar & Rodrigo Amaro e Silva & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira, 2022. "Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates," Energies, MDPI, vol. 15(12), pages 1-23, June.
    2. Yin, He & Wu, Jinghu & Zhang, Gang & Lan, Hai & Hong, Ying-Yi & Li, Dan, 2024. "Variable time-scale power scheduling of a River-Sea going renewable energy ship considering coupling variations in all-electric propulsion," Applied Energy, Elsevier, vol. 374(C).
    3. Yin, He & Yang, Mao-sen & Lan, Hai & Hong, Ying-Yi & Guo, Dong & Jin, Feng, 2024. "A hybrid graph attention network based method for interval prediction of shipboard solar irradiation," Energy, Elsevier, vol. 298(C).
    4. Zhao, Wei & Zhang, Haoran & Zheng, Jianqin & Dai, Yuanhao & Huang, Liqiao & Shang, Wenlong & Liang, Yongtu, 2021. "A point prediction method based automatic machine learning for day-ahead power output of multi-region photovoltaic plants," Energy, Elsevier, vol. 223(C).
    5. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
    7. Tang, Ruoli & An, Qing & Xu, Fan & Zhang, Xiaodi & Li, Xin & Lai, Jingang & Dong, Zhengcheng, 2020. "Optimal operation of hybrid energy system for intelligent ship: An ultrahigh-dimensional model and control method," Energy, Elsevier, vol. 211(C).
    8. Claudia Durán & Ivan Derpich & Raúl Carrasco, 2022. "Optimization of Port Layout to Determine Greenhouse Gas Emission Gaps," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    9. Tang, Ruoli & Zhang, Shihan & Zhang, Shangyu & Lai, Jingang & Zhang, Yan, 2023. "Semi-online parameter identification methodology for maritime power lithium batteries," Applied Energy, Elsevier, vol. 339(C).
    10. Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
    11. Carneiro, Tatiane C. & Rocha, Paulo A.C. & Carvalho, Paulo C.M. & Fernández-Ramírez, Luis M., 2022. "Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain," Applied Energy, Elsevier, vol. 314(C).
    12. Tang, Ruoli & Lin, Qiao & Zhou, Jinxiang & Zhang, Shangyu & Lai, Jingang & Li, Xin & Dong, Zhengcheng, 2020. "Suppression strategy of short-term and long-term environmental disturbances for maritime photovoltaic system," Applied Energy, Elsevier, vol. 259(C).
    13. Venizelos Efthymiou & Christina N. Papadimitriou, 2022. "Smart Photovoltaic Energy Systems for a Sustainable Future," Energies, MDPI, vol. 15(18), pages 1-3, September.
    14. Sandelic, Monika & Peyghami, Saeed & Sangwongwanich, Ariya & Blaabjerg, Frede, 2022. "Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Liu, Guanjun & Qin, Hui & Shen, Qin & Lyv, Hao & Qu, Yuhua & Fu, Jialong & Liu, Yongqi & Zhou, Jianzhong, 2021. "Probabilistic spatiotemporal solar irradiation forecasting using deep ensembles convolutional shared weight long short-term memory network," Applied Energy, Elsevier, vol. 300(C).
    16. Nivolianiti, Evaggelia & Karnavas, Yannis L. & Charpentier, Jean-Frederic, 2024. "Energy management of shipboard microgrids integrating energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    17. Tang, Ruoli & Zhang, Shangyu & Zhang, Shihan & Zhang, Yan & Lai, Jingang, 2023. "Parameter identification for lithium batteries: Model variable-coupling analysis and a novel cooperatively coevolving identification algorithm," Energy, Elsevier, vol. 263(PB).
    18. Xin Li & Xiaodi Zhang & Yuling Fan, 2019. "A Two-Step Framework for Energy Local Area Network Scheduling Problem with Electric Vehicles Based on Global–Local Optimization Method," Energies, MDPI, vol. 12(1), pages 1-17, January.
    19. Zhu, Nanyang & Wang, Ying & Yuan, Kun & Yan, Jiahao & Li, Yaping & Zhang, Kaifeng, 2024. "GGNet: A novel graph structure for power forecasting in renewable power plants considering temporal lead-lag correlations," Applied Energy, Elsevier, vol. 364(C).
    20. Gupta, Priya & Singh, Rhythm, 2023. "Combining a deep learning model with multivariate empirical mode decomposition for hourly global horizontal irradiance forecasting," Renewable Energy, Elsevier, vol. 206(C), pages 908-927.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2307-:d:1082567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.