IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v339y2023ics0306261923003562.html
   My bibliography  Save this article

Semi-online parameter identification methodology for maritime power lithium batteries

Author

Listed:
  • Tang, Ruoli
  • Zhang, Shihan
  • Zhang, Shangyu
  • Lai, Jingang
  • Zhang, Yan

Abstract

Due to the special working environment of power lithium battery (P-LiB) on all-electric ships, the high-efficiency battery management system (BMS) is required. In this study, a novel semi-online parameter identification methodology integrated with large-scale global optimization algorithm is developed, in order to ensure the high-quality performance of subsequent BMS functions like the equalization control and state-of-charge estimation. Firstly, the P-LiB parameter identification model is established based on the first-order Thevenin equivalent circuit. Then, the evolution strategy of identification model is developed for dynamically updating the model along with the entire charging/discharging process of P-LiB. Considering that the model complexity increases exponentially with dimensionality, the AMCCDE algorithm developed in our previous work is employed to optimize the dynamic model repeatedly. Moreover, the semi-online operation mechanism for AMCCDE is proposed, in which the multiple context vectors are used to exchange information and inherit the optimal solution between each two adjacent semi-online cycles, and the identification solutions can be dynamically corrected and output at the end of each cycle. Finally, the developed semi-online identification methodology is verified using the USTC-DST and USTC-UDDS datasets. Experimental results show that the developed methodology can well balance the identification accuracy and timeliness, and dynamically output the accurate identification solutions in real-time.

Suggested Citation

  • Tang, Ruoli & Zhang, Shihan & Zhang, Shangyu & Lai, Jingang & Zhang, Yan, 2023. "Semi-online parameter identification methodology for maritime power lithium batteries," Applied Energy, Elsevier, vol. 339(C).
  • Handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003562
    DOI: 10.1016/j.apenergy.2023.120992
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923003562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuo Yang & Yugui Tang & Zhen Zhang, 2021. "Parameter Identification and State-of-Charge Estimation for Lithium-Ion Batteries Using Separated Time Scales and Extended Kalman Filter," Energies, MDPI, vol. 14(4), pages 1-15, February.
    2. Wenqing Hu & Qianming Shang & Xiangrui Bian & Renjie Zhu, 2022. "Energy management strategy of hybrid energy storage system based on fuzzy control for ships [State-of-charge balancing of lithium-ion batteries with state-of-health awareness capability]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 673-684.
    3. Tang, Ruoli & Zhang, Shangyu & Zhang, Shihan & Zhang, Yan & Lai, Jingang, 2023. "Parameter identification for lithium batteries: Model variable-coupling analysis and a novel cooperatively coevolving identification algorithm," Energy, Elsevier, vol. 263(PB).
    4. Tang, Ruoli & An, Qing & Xu, Fan & Zhang, Xiaodi & Li, Xin & Lai, Jingang & Dong, Zhengcheng, 2020. "Optimal operation of hybrid energy system for intelligent ship: An ultrahigh-dimensional model and control method," Energy, Elsevier, vol. 211(C).
    5. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Tang, Ruoli & Li, Xin & Lai, Jingang, 2018. "A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization," Applied Energy, Elsevier, vol. 228(C), pages 254-264.
    7. Ovrum, E. & Bergh, T.F., 2015. "Modelling lithium-ion battery hybrid ship crane operation," Applied Energy, Elsevier, vol. 152(C), pages 162-172.
    8. Tang, Ruoli & Lin, Qiao & Zhou, Jinxiang & Zhang, Shangyu & Lai, Jingang & Li, Xin & Dong, Zhengcheng, 2020. "Suppression strategy of short-term and long-term environmental disturbances for maritime photovoltaic system," Applied Energy, Elsevier, vol. 259(C).
    9. Tang, Ruoli & Wu, Zhou & Li, Xin, 2018. "Optimal operation of photovoltaic/battery/diesel/cold-ironing hybrid energy system for maritime application," Energy, Elsevier, vol. 162(C), pages 697-714.
    10. Zheng, Fangdan & Xing, Yinjiao & Jiang, Jiuchun & Sun, Bingxiang & Kim, Jonghoon & Pecht, Michael, 2016. "Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 183(C), pages 513-525.
    11. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An, Qing & Peng, Jian, 2023. "Parameter identification of lithium battery pack based on novel cooperatively coevolving differential evolution algorithm," Renewable Energy, Elsevier, vol. 216(C).
    2. Khosravi, Nima & Dowlatabadi, Masrour & Abdelghany, Muhammad Bakr & Tostado-Véliz, Marcos & Jurado, Francisco, 2024. "Enhancing battery management for HEVs and EVs: A hybrid approach for parameter identification and voltage estimation in lithium-ion battery models," Applied Energy, Elsevier, vol. 356(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. An, Qing & Peng, Jian, 2023. "Parameter identification of lithium battery pack based on novel cooperatively coevolving differential evolution algorithm," Renewable Energy, Elsevier, vol. 216(C).
    2. Tang, Ruoli & Zhang, Shangyu & Zhang, Shihan & Zhang, Yan & Lai, Jingang, 2023. "Parameter identification for lithium batteries: Model variable-coupling analysis and a novel cooperatively coevolving identification algorithm," Energy, Elsevier, vol. 263(PB).
    3. Tang, Ruoli & An, Qing & Xu, Fan & Zhang, Xiaodi & Li, Xin & Lai, Jingang & Dong, Zhengcheng, 2020. "Optimal operation of hybrid energy system for intelligent ship: An ultrahigh-dimensional model and control method," Energy, Elsevier, vol. 211(C).
    4. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. He Yin & Hai Lan & Ying-Yi Hong & Zhuangwei Wang & Peng Cheng & Dan Li & Dong Guo, 2023. "A Comprehensive Review of Shipboard Power Systems with New Energy Sources," Energies, MDPI, vol. 16(5), pages 1-44, February.
    7. Tang, Ruoli & Lin, Qiao & Zhou, Jinxiang & Zhang, Shangyu & Lai, Jingang & Li, Xin & Dong, Zhengcheng, 2020. "Suppression strategy of short-term and long-term environmental disturbances for maritime photovoltaic system," Applied Energy, Elsevier, vol. 259(C).
    8. Yang, Kuo & Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2022. "A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism," Energy, Elsevier, vol. 244(PB).
    9. Nivolianiti, Evaggelia & Karnavas, Yannis L. & Charpentier, Jean-Frederic, 2024. "Energy management of shipboard microgrids integrating energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Xin Li & Xiaodi Zhang & Yuling Fan, 2019. "A Two-Step Framework for Energy Local Area Network Scheduling Problem with Electric Vehicles Based on Global–Local Optimization Method," Energies, MDPI, vol. 12(1), pages 1-17, January.
    11. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    12. Rodríguez-Gallegos, Carlos D. & Vinayagam, Lokesh & Gandhi, Oktoviano & Yagli, Gokhan Mert & Alvarez-Alvarado, Manuel S. & Srinivasan, Dipti & Reindl, Thomas & Panda, S.K., 2021. "Novel forecast-based dispatch strategy optimization for PV hybrid systems in real time," Energy, Elsevier, vol. 222(C).
    13. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    14. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    15. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    16. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    17. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    18. Wen Zhang & Yuting Yang & Huigang Liang, 2023. "A Bibliometric Analysis of Enterprise Social Media in Digital Economy: Research Hotspots and Trends," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    19. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
    20. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.