IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v176y2022ics0040162521008799.html
   My bibliography  Save this article

Digital twin for sustainable manufacturing supply chains: Current trends, future perspectives, and an implementation framework

Author

Listed:
  • Kamble, Sachin S
  • Gunasekaran, Angappa
  • Parekh, Harsh
  • Mani, Venkatesh
  • Belhadi, Amine
  • Sharma, Rohit

Abstract

A digital twin is an integration of virtual and physical systems using disruptive technologies. More precisely, it is a method of developing sustainable, intelligent manufacturing systems for attaining robust quality, reducing time, and customized products using real-time information throughout the product life cycle. This paper presents a systematic literature review of 98 research papers on various digital supply chain twin dimensions with sustainable performance objectives. The selected papers were reviewed and classified into three broad categories: components of the digital twin, applications in the manufacturing supply chain, and sustainability. Based on the review and future perspectives from the study, we suggest that advancements in technologies such as IoT, cloud computing, and blockchain have increased the potential of digital twin applications in the supply chain. The results indicate that a digital supply chain twin should include the things and humans from the entire supply chain and not be restricted to the local manufacturing systems. Based on our review findings, we present a sustainable digital twin implementation framework for supply chains. The proposed framework will guide future practitioners and researchers.

Suggested Citation

  • Kamble, Sachin S & Gunasekaran, Angappa & Parekh, Harsh & Mani, Venkatesh & Belhadi, Amine & Sharma, Rohit, 2022. "Digital twin for sustainable manufacturing supply chains: Current trends, future perspectives, and an implementation framework," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:tefoso:v:176:y:2022:i:c:s0040162521008799
    DOI: 10.1016/j.techfore.2021.121448
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162521008799
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2021.121448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roberto Rocca & Paolo Rosa & Claudio Sassanelli & Luca Fumagalli & Sergio Terzi, 2020. "Integrating Virtual Reality and Digital Twin in Circular Economy Practices: A Laboratory Application Case," Sustainability, MDPI, vol. 12(6), pages 1-27, March.
    2. Cenamor, J. & Rönnberg Sjödin, D. & Parida, V., 2017. "Adopting a platform approach in servitization: Leveraging the value of digitalization," International Journal of Production Economics, Elsevier, vol. 192(C), pages 54-65.
    3. Lavinia Chiara Tagliabue & Fulvio Re Cecconi & Sebastiano Maltese & Stefano Rinaldi & Angelo Luigi Camillo Ciribini & Alessandra Flammini, 2021. "Leveraging Digital Twin for Sustainability Assessment of an Educational Building," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    4. Daniel R. A. Schallmo & Jochen Lohse, 2020. "Digitalstrategien erfolgreich entwickeln," Springer Books, Springer, number 978-3-658-31242-8, June.
    5. Guanghui Zhou & Chao Zhang & Zhi Li & Kai Ding & Chuang Wang, 2020. "Knowledge-driven digital twin manufacturing cell towards intelligent manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 58(4), pages 1034-1051, February.
    6. Maurizio Bevilacqua & Eleonora Bottani & Filippo Emanuele Ciarapica & Francesco Costantino & Luciano Di Donato & Alessandra Ferraro & Giovanni Mazzuto & Andrea Monteriù & Giorgia Nardini & Marco Orten, 2020. "Digital Twin Reference Model Development to Prevent Operators’ Risk in Process Plants," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    7. Kamble, Sachin S. & Gunasekaran, Angappa & Ghadge, Abhijeet & Raut, Rakesh, 2020. "A performance measurement system for industry 4.0 enabled smart manufacturing system in SMMEs- A review and empirical investigation," International Journal of Production Economics, Elsevier, vol. 229(C).
    8. Kai Ding & Felix T.S. Chan & Xudong Zhang & Guanghui Zhou & Fuqiang Zhang, 2019. "Defining a Digital Twin-based Cyber-Physical Production System for autonomous manufacturing in smart shop floors," International Journal of Production Research, Taylor & Francis Journals, vol. 57(20), pages 6315-6334, October.
    9. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    10. Xi Vincent Wang & Lihui Wang, 2019. "Digital twin-based WEEE recycling, recovery and remanufacturing in the background of Industry 4.0," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3892-3902, June.
    11. Jinjiang Wang & Lunkuan Ye & Robert X. Gao & Chen Li & Laibin Zhang, 2019. "Digital Twin for rotating machinery fault diagnosis in smart manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3920-3934, June.
    12. Qiang Liu & Hao Zhang & Jiewu Leng & Xin Chen, 2019. "Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3903-3919, June.
    13. Daniel Olivotti & Sonja Dreyer & Benedikt Lebek & Michael H. Breitner, 2019. "Creating the foundation for digital twins in the manufacturing industry: an integrated installed base management system," Information Systems and e-Business Management, Springer, vol. 17(1), pages 89-116, March.
    14. Wilma Polini & Andrea Corrado, 2020. "Digital twin of composite assembly manufacturing process," International Journal of Production Research, Taylor & Francis Journals, vol. 58(17), pages 5238-5252, September.
    15. Abolfazl Rezaei Aderiani & Kristina Wärmefjord & Rikard Söderberg & Lars Lindkvist, 2019. "Developing a selective assembly technique for sheet metal assemblies," International Journal of Production Research, Taylor & Francis Journals, vol. 57(22), pages 7174-7188, November.
    16. Zheng, Jianqin & Dai, Yuanhao & Liang, Yongtu & Liao, Qi & Zhang, Haoran, 2020. "An online real-time estimation tool of leakage parameters for hazardous liquid pipelines," International Journal of Critical Infrastructure Protection, Elsevier, vol. 31(C).
    17. Parmar, Rashik & Leiponen, Aija & Thomas, Llewellyn D.W., 2020. "Building an organizational digital twin," Business Horizons, Elsevier, vol. 63(6), pages 725-736.
    18. Xiao Li & Jiarou Cao & Zhenggang Liu & Xinggang Luo, 2020. "Sustainable Business Model Based on Digital Twin Platform Network: The Inspiration from Haier’s Case Study in China," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Esam Salamah & Ahmad Alzubi & Azmiye Yinal, 2023. "Unveiling the Impact of Digitalization on Supply Chain Performance in the Post-COVID-19 Era: The Mediating Role of Supply Chain Integration and Efficiency," Sustainability, MDPI, vol. 16(1), pages 1-30, December.
    2. Tsega Y. Melesse & Chiara Franciosi & Valentina Di Pasquale & Stefano Riemma, 2023. "Analyzing the Implementation of Digital Twins in the Agri-Food Supply Chain," Logistics, MDPI, vol. 7(2), pages 1-17, June.
    3. Aurelija Burinskienė & Milena Seržantė, 2022. "Digitalisation as the Indicator of the Evidence of Sustainability in the European Union," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    4. Saoussane Srhir & Anicia Jaegler & Jairo R. Montoya‐Torres, 2023. "Uncovering Industry 4.0 technology attributes in sustainable supply chain 4.0: A systematic literature review," Business Strategy and the Environment, Wiley Blackwell, vol. 32(7), pages 4143-4166, November.
    5. Junaid, Muhammad & Zhang, Qingyu & Cao, Mei & Luqman, Adeel, 2023. "Nexus between technology enabled supply chain dynamic capabilities, integration, resilience, and sustainable performance: An empirical examination of healthcare organizations," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    6. Teresa Riso & Carla Morrone, 2023. "To Align Technological Advancement and Ethical Conduct: An Analysis of the Relationship between Digital Technologies and Sustainable Decision-Making Processes," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    7. Xiao Han & Yang Zheng, 2022. "Driving Elements of Enterprise Digital Transformation Based on the Perspective of Dynamic Evolution," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    8. Naoum Tsolakis & Roman Schumacher & Manoj Dora & Mukesh Kumar, 2023. "Artificial intelligence and blockchain implementation in supply chains: a pathway to sustainability and data monetisation?," Annals of Operations Research, Springer, vol. 327(1), pages 157-210, August.
    9. Sachini Weerasekara & Zhenyuan Lu & Burcu Ozek & Jacqueline Isaacs & Sagar Kamarthi, 2022. "Trends in Adopting Industry 4.0 for Asset Life Cycle Management for Sustainability: A Keyword Co-Occurrence Network Review and Analysis," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    10. He Yin & Hai Lan & Ying-Yi Hong & Zhuangwei Wang & Peng Cheng & Dan Li & Dong Guo, 2023. "A Comprehensive Review of Shipboard Power Systems with New Energy Sources," Energies, MDPI, vol. 16(5), pages 1-44, February.
    11. Santosh Kumar Srivastava & Surajit Bag, 2023. "Recent Developments on Flexible Manufacturing in the Digital Era: A Review and Future Research Directions," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(4), pages 483-516, December.
    12. Hafiz Wasim Akram & Samreen Akhtar & Alam Ahmad & Imran Anwar & Mohammad Ali Bait Ali Sulaiman, 2023. "Developing a Conceptual Framework Model for Effective Perishable Food Cold-Supply-Chain Management Based on Structured Literature Review," Sustainability, MDPI, vol. 15(6), pages 1-28, March.
    13. Maheshwari, Pratik & Kamble, Sachin & Belhadi, Amine & Venkatesh, Mani & Abedin, Mohammad Zoynul, 2023. "Digital twin-driven real-time planning, monitoring, and controlling in food supply chains," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    14. Min Yan & Can Huang & Peter Bienstman & Peter Tino & Wei Lin & Jie Sun, 2024. "Emerging opportunities and challenges for the future of reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Nicoletti, Bernardo & Appolloni, Andrea, 2024. "A framework for digital twins solutions for 5 PL operators," Technology in Society, Elsevier, vol. 76(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Tiep & Duong, Quang Huy & Nguyen, Truong Van & Zhu, You & Zhou, Li, 2022. "Knowledge mapping of digital twin and physical internet in Supply Chain Management: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 244(C).
    2. Kendrik Yan Hong Lim & Pai Zheng & Chun-Hsien Chen, 2020. "A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1313-1337, August.
    3. Teng, Sin Yong & Touš, Michal & Leong, Wei Dong & How, Bing Shen & Lam, Hon Loong & Máša, Vítězslav, 2021. "Recent advances on industrial data-driven energy savings: Digital twins and infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Rantala, Tero & Ukko, Juhani & Nasiri, Mina & Saunila, Minna, 2023. "Shifting focus of value creation through industrial digital twins—From internal application to ecosystem-level utilization," Technovation, Elsevier, vol. 125(C).
    5. Neto, Anis Assad & Ribeiro da Silva, Elias & Deschamps, Fernando & do Nascimento Junior, Laercio Alves & Pinheiro de Lima, Edson, 2023. "Modeling production disorder: Procedures for digital twins of flexibility-driven manufacturing systems," International Journal of Production Economics, Elsevier, vol. 260(C).
    6. Özden Tozanlı & Elif Kongar & Surendra M. Gupta, 2020. "Evaluation of Waste Electronic Product Trade-in Strategies in Predictive Twin Disassembly Systems in the Era of Blockchain," Sustainability, MDPI, vol. 12(13), pages 1-33, July.
    7. Saporiti, Nicolò & Cannas, Violetta Giada & Pozzi, Rossella & Rossi, Tommaso, 2023. "Challenges and countermeasures for digital twin implementation in manufacturing plants: A Delphi study," International Journal of Production Economics, Elsevier, vol. 261(C).
    8. Tandon, Anushree & Dhir, Amandeep & Islam, Nazrul & Talwar, Shalini & Mäntymäki, Matti, 2021. "Psychological and behavioral outcomes of social media-induced fear of missing out at the workplace," Journal of Business Research, Elsevier, vol. 136(C), pages 186-197.
    9. Georgios Falekas & Athanasios Karlis, 2021. "Digital Twin in Electrical Machine Control and Predictive Maintenance: State-of-the-Art and Future Prospects," Energies, MDPI, vol. 14(18), pages 1-26, September.
    10. Rong Xie & Muyan Chen & Weihuang Liu & Hongfei Jian & Yanjun Shi, 2021. "Digital Twin Technologies for Turbomachinery in a Life Cycle Perspective: A Review," Sustainability, MDPI, vol. 13(5), pages 1-22, February.
    11. Hazrathosseini, Arman & Moradi Afrapoli, Ali, 2023. "The advent of digital twins in surface mining: Its time has finally arrived," Resources Policy, Elsevier, vol. 80(C).
    12. Assarzadegan, Parisa & Rasti-Barzoki, Morteza, 2020. "A game theoretic approach for pricing under a return policy and a money back guarantee in a closed loop supply chain," International Journal of Production Economics, Elsevier, vol. 222(C).
    13. Huihui Liu & Xiaohang Yue & Hui Ding & G. Keong Leong, 2017. "Optimal Remanufacturing Certification Contracts in the Electrical and Electronic Industry," Sustainability, MDPI, vol. 9(4), pages 1-17, March.
    14. Yang, Hui & Chen, Jing & Chen, Xu & Chen, Bintong, 2017. "The impact of customer returns in a supply chain with a common retailer," European Journal of Operational Research, Elsevier, vol. 256(1), pages 139-150.
    15. Rafael Martínez-Peláez & Alberto Ochoa-Brust & Solange Rivera & Vanessa G. Félix & Rodolfo Ostos & Héctor Brito & Ramón A. Félix & Luis J. Mena, 2023. "Role of Digital Transformation for Achieving Sustainability: Mediated Role of Stakeholders, Key Capabilities, and Technology," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    16. Bo Wang & Ning Wang, 2022. "Decision Models for a Dual-Recycling Channel Reverse Supply Chain with Consumer Strategic Behavior," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    17. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    18. Salehi-Amiri, Amirhossein & Zahedi, Ali & Akbapour, Navid & Hajiaghaei-Keshteli, Mostafa, 2021. "Designing a sustainable closed-loop supply chain network for walnut industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Arsenyan, Jbid & Mirowska, Agata & Piepenbrink, Anke, 2023. "Close encounters with the virtual kind: Defining a human-virtual agent coexistence framework," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    20. Patricia van Loon & Luk N. Van Wassenhove & Ales Mihelic, 2022. "Designing a circular business strategy: 7 years of evolution at a large washing machine manufacturer," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1030-1041, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:176:y:2022:i:c:s0040162521008799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.