IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v317y2022ics0306261922004950.html
   My bibliography  Save this article

A modified power management algorithm with energy efficiency and GHG emissions limitation for hybrid power ship system

Author

Listed:
  • Xu, Lei
  • Wen, Yintang
  • Luo, Xiaoyuan
  • Lu, Zhigang
  • Guan, Xinping

Abstract

With the integration of energy storage system (ESS), photovoltaic cell (PV) and generator, hybrid power ship system (HPSS), as one of promising technology, is regarded as an advanced method to improve energy efficiency and marine environment quality. However, the computational complexity and non-convexity of energy scheduling in hybrid power ship system make it challenging to obtain the feasible solution. To address this crucial issue, a heuristic optimization algorithm named multi-populations particle swarm optimization (MPPSO) is proposed for economic and feasible energy scheduling. Firstly, a hybrid power ship system, comprising generator, ESS, PV, service loads and propulsion system, is formulated. On this basis, a load shedding coefficient is given for the secure and stable operation of hybrid power ship system under fault model. Then, to achieve energy scheduling, several improvements are proposed to enhance PSO. Considering the problem of premature, a nonlinear adaptive inertial weight strategy is proposed to improve the searching ability. With the fitness value of population, learning coefficients are adjusted in nonlinear so that particle can accurately learn from individual or population position. Further, a modified velocity update formula with the information of historical experience and center particle is proposed to employ the particle information fully. Finally, the effectiveness of MPPSO is illustrated on simulation experiment by three cases.

Suggested Citation

  • Xu, Lei & Wen, Yintang & Luo, Xiaoyuan & Lu, Zhigang & Guan, Xinping, 2022. "A modified power management algorithm with energy efficiency and GHG emissions limitation for hybrid power ship system," Applied Energy, Elsevier, vol. 317(C).
  • Handle: RePEc:eee:appene:v:317:y:2022:i:c:s0306261922004950
    DOI: 10.1016/j.apenergy.2022.119114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922004950
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Shuli & Lan, Hai & Yu, David. C. & Fu, Qiang & Hong, Ying-Yi & Yu, Lijun & Yang, Ruirui, 2017. "Optimal sizing of hybrid energy storage sub-systems in PV/diesel ship power system using frequency analysis," Energy, Elsevier, vol. 140(P1), pages 198-208.
    2. Diab, Fahd & Lan, Hai & Ali, Salwa, 2016. "Novel comparison study between the hybrid renewable energy systems on land and on ship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 452-463.
    3. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2016. "Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building," Applied Energy, Elsevier, vol. 171(C), pages 153-171.
    4. Qu, Yinpeng & Xu, Jian & Sun, Yuanzhang & Liu, Dan, 2021. "A temporal distributed hybrid deep learning model for day-ahead distributed PV power forecasting," Applied Energy, Elsevier, vol. 304(C).
    5. Huang, Yuqing & Lan, Hai & Hong, Ying-Yi & Wen, Shuli & Fang, Sidun, 2020. "Joint voyage scheduling and economic dispatch for all-electric ships with virtual energy storage systems," Energy, Elsevier, vol. 190(C).
    6. O'Shaughnessy, Eric & Heeter, Jenny & Shah, Chandra & Koebrich, Sam, 2021. "Corporate acceleration of the renewable energy transition and implications for electric grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Xiaojun & Yao, Chong & Song, Enzhe & Liu, Zhijiang & Ke, Yun & Ding, Shunliang, 2023. "Novel enhancement of energy distribution for marine hybrid propulsion systems by an advanced variable weight decision model predictive control," Energy, Elsevier, vol. 274(C).
    2. Claudia Durán & Ivan Derpich & Raúl Carrasco, 2022. "Optimization of Port Layout to Determine Greenhouse Gas Emission Gaps," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    3. He Yin & Hai Lan & Ying-Yi Hong & Zhuangwei Wang & Peng Cheng & Dan Li & Dong Guo, 2023. "A Comprehensive Review of Shipboard Power Systems with New Energy Sources," Energies, MDPI, vol. 16(5), pages 1-44, February.
    4. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Xie, Peilin & Tan, Sen & Bazmohammadi, Najmeh & Guerrero, Josep. M. & Vasquez, Juan. C. & Alcala, Jose Matas & Carreño, Jorge El Mariachet, 2022. "A distributed real-time power management scheme for shipboard zonal multi-microgrid system," Applied Energy, Elsevier, vol. 317(C).
    3. Rui Yang & Yupeng Yuan & Rushun Ying & Boyang Shen & Teng Long, 2020. "A Novel Energy Management Strategy for a Ship’s Hybrid Solar Energy Generation System Using a Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 13(6), pages 1-14, March.
    4. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    5. Nian Liu & Cheng Wang & Minyang Cheng & Jie Wang, 2016. "A Privacy-Preserving Distributed Optimal Scheduling for Interconnected Microgrids," Energies, MDPI, vol. 9(12), pages 1-18, December.
    6. Hossam A. Gabbar, 2021. "Resiliency Analysis of Hybrid Energy Systems within Interconnected Infrastructures," Energies, MDPI, vol. 14(22), pages 1-12, November.
    7. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    8. Wen, Shuli & Lan, Hai & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun & Cheng, Peng, 2016. "Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system," Applied Energy, Elsevier, vol. 175(C), pages 158-167.
    9. Li, Wei & Sun, Wen & Li, Guomin & Cui, Pengfei & Wu, Wen & Jin, Baihui, 2017. "Temporal and spatial heterogeneity of carbon intensity in China's construction industry," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 162-173.
    10. Ben Christopher, S.J. & Carolin Mabel, M., 2020. "A bio-inspired approach for probabilistic energy management of micro-grid incorporating uncertainty in statistical cost estimation," Energy, Elsevier, vol. 203(C).
    11. Chabok, Hossein & Aghaei, Jamshid & Sheikh, Morteza & Roustaei, Mahmoud & Zare, Mohsen & Niknam, Taher & Lehtonen, Matti & Shafi-khah, Miadreza & Catalão, João P.S., 2022. "Transmission-constrained optimal allocation of price-maker wind-storage units in electricity markets," Applied Energy, Elsevier, vol. 310(C).
    12. Hao Jin & Xinhang Yang, 2023. "Bilevel Optimal Sizing and Operation Method of Fuel Cell/Battery Hybrid All-Electric Shipboard Microgrid," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    13. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    14. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    15. Lai, Wenzhe & Zhen, Zhao & Wang, Fei & Fu, Wenjie & Wang, Junlong & Zhang, Xudong & Ren, Hui, 2024. "Sub-region division based short-term regional distributed PV power forecasting method considering spatio-temporal correlations," Energy, Elsevier, vol. 288(C).
    16. Jiang, Jianhua & Zhou, Renjie & Xu, Hao & Wang, Hao & Wu, Ping & Wang, Zhuo & Li, Jian, 2022. "Optimal sizing, operation strategy and case study of a grid-connected solid oxide fuel cell microgrid," Applied Energy, Elsevier, vol. 307(C).
    17. Ajlan, Abdullah & Tan, Chee Wei & Abdilahi, Abdirahman Mohamed, 2017. "Assessment of environmental and economic perspectives for renewable-based hybrid power system in Yemen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 559-570.
    18. Qiu, Jing & Zhao, Junhua & Yang, Hongming & Wang, Dongxiao & Dong, Zhao Yang, 2018. "Planning of solar photovoltaics, battery energy storage system and gas micro turbine for coupled micro energy grids," Applied Energy, Elsevier, vol. 219(C), pages 361-369.
    19. Purnell, K. & Bruce, A.G. & MacGill, I., 2022. "Impacts of electrifying public transit on the electricity grid, from regional to state level analysis," Applied Energy, Elsevier, vol. 307(C).
    20. Guoling Wang & Xu Liu & Zhenyu Li & Shunxiao Xu & Zhe Chen, 2018. "An Adaptive Grid Voltage/Frequency Tracking Method Based on SOGIs on a Shipboard PV–Diesel-Battery Hybrid Power System," Energies, MDPI, vol. 11(4), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:317:y:2022:i:c:s0306261922004950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.