IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v111y2016icp599-608.html
   My bibliography  Save this article

Predictive spatio-temporal model for spatially sparse global solar radiation data

Author

Listed:
  • André, Maïna
  • Dabo-Niang, Sophie
  • Soubdhan, Ted
  • Ould-Baba, Hanany

Abstract

This paper introduces a new approach for the forecasting of solar radiation series at a located station for very short time scale. We built a multivariate model in using few stations (3 stations) separated with irregular distances from 26 km to 56 km. The proposed model is a spatio temporal vector autoregressive VAR model specifically designed for the analysis of spatially sparse spatio-temporal data. This model differs from classic linear models in using spatial and temporal parameters where the available predictors are the lagged values at each station. A spatial structure of stations is defined by the sequential introduction of predictors in the model. Moreover, an iterative strategy in the process of our model will select the necessary stations removing the uninteresting predictors and also selecting the optimal p-order. We studied the performance of this model. The metric error, the relative root mean squared error (rRMSE), is presented at different short time scales. Moreover, we compared the results of our model to simple and well known persistence model and those found in literature.

Suggested Citation

  • André, Maïna & Dabo-Niang, Sophie & Soubdhan, Ted & Ould-Baba, Hanany, 2016. "Predictive spatio-temporal model for spatially sparse global solar radiation data," Energy, Elsevier, vol. 111(C), pages 599-608.
  • Handle: RePEc:eee:energy:v:111:y:2016:i:c:p:599-608
    DOI: 10.1016/j.energy.2016.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216307769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Heping & Shi, Jing & Erdem, Ergin, 2010. "Prediction of wind speed time series using modified Taylor Kriging method," Energy, Elsevier, vol. 35(12), pages 4870-4879.
    2. Yang, Dazhi & Gu, Chaojun & Dong, Zibo & Jirutitijaroen, Panida & Chen, Nan & Walsh, Wilfred M., 2013. "Solar irradiance forecasting using spatial-temporal covariance structures and time-forward kriging," Renewable Energy, Elsevier, vol. 60(C), pages 235-245.
    3. Dambreville, Romain & Blanc, Philippe & Chanussot, Jocelyn & Boldo, Didier, 2014. "Very short term forecasting of the Global Horizontal Irradiance using a spatio-temporal autoregressive model," Renewable Energy, Elsevier, vol. 72(C), pages 291-300.
    4. Gneiting T., 2002. "Nonseparable, Stationary Covariance Functions for Space-Time Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 590-600, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Llinet Benavides Cesar & Rodrigo Amaro e Silva & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira, 2022. "Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates," Energies, MDPI, vol. 15(12), pages 1-23, June.
    2. Yin, He & Yang, Mao-sen & Lan, Hai & Hong, Ying-Yi & Guo, Dong & Jin, Feng, 2024. "A hybrid graph attention network based method for interval prediction of shipboard solar irradiation," Energy, Elsevier, vol. 298(C).
    3. Stéphanie Monjoly & Maina André & Rudy Calif & Ted Soubdhan, 2019. "Forecast Horizon and Solar Variability Influences on the Performances of Multiscale Hybrid Forecast Model," Energies, MDPI, vol. 12(12), pages 1-20, June.
    4. Lan, Hai & Zhang, Chi & Hong, Ying-Yi & He, Yin & Wen, Shuli, 2019. "Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network," Applied Energy, Elsevier, vol. 247(C), pages 389-402.
    5. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    6. Cabral, Joilson de Assis & Legey, Luiz Fernando Loureiro & Freitas Cabral, Maria Viviana de, 2017. "Electricity consumption forecasting in Brazil: A spatial econometrics approach," Energy, Elsevier, vol. 126(C), pages 124-131.
    7. He Yin & Hai Lan & Ying-Yi Hong & Zhuangwei Wang & Peng Cheng & Dan Li & Dong Guo, 2023. "A Comprehensive Review of Shipboard Power Systems with New Energy Sources," Energies, MDPI, vol. 16(5), pages 1-44, February.
    8. Bastos, Bruno Quaresma & Cyrino Oliveira, Fernando Luiz & Milidiú, Ruy Luiz, 2021. "U-Convolutional model for spatio-temporal wind speed forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 949-970.
    9. Ewa Chodakowska & Joanicjusz Nazarko & Łukasz Nazarko & Hesham S. Rabayah, 2024. "Solar Radiation Forecasting: A Systematic Meta-Review of Current Methods and Emerging Trends," Energies, MDPI, vol. 17(13), pages 1-27, June.
    10. Lan, Hai & Yin, He & Hong, Ying-Yi & Wen, Shuli & Yu, David C. & Cheng, Peng, 2018. "Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route," Applied Energy, Elsevier, vol. 211(C), pages 15-27.
    11. Fateh Mehazzem & Maina André & Rudy Calif, 2022. "Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region," Energies, MDPI, vol. 15(22), pages 1-21, November.
    12. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Fang, Lurui & Yan, Ke, 2022. "Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control," Renewable Energy, Elsevier, vol. 195(C), pages 147-166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fateh Mehazzem & Maina André & Rudy Calif, 2022. "Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region," Energies, MDPI, vol. 15(22), pages 1-21, November.
    2. Lan, Hai & Zhang, Chi & Hong, Ying-Yi & He, Yin & Wen, Shuli, 2019. "Day-ahead spatiotemporal solar irradiation forecasting using frequency-based hybrid principal component analysis and neural network," Applied Energy, Elsevier, vol. 247(C), pages 389-402.
    3. Lan, Hai & Yin, He & Hong, Ying-Yi & Wen, Shuli & Yu, David C. & Cheng, Peng, 2018. "Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route," Applied Energy, Elsevier, vol. 211(C), pages 15-27.
    4. Monjoly, Stéphanie & André, Maïna & Calif, Rudy & Soubdhan, Ted, 2017. "Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach," Energy, Elsevier, vol. 119(C), pages 288-298.
    5. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    6. Llinet Benavides Cesar & Rodrigo Amaro e Silva & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira, 2022. "Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates," Energies, MDPI, vol. 15(12), pages 1-23, June.
    7. Severiano, Carlos A. & Silva, Petrônio Cândido de Lima e & Weiss Cohen, Miri & Guimarães, Frederico Gadelha, 2021. "Evolving fuzzy time series for spatio-temporal forecasting in renewable energy systems," Renewable Energy, Elsevier, vol. 171(C), pages 764-783.
    8. Yuyang Gao & Chao Qu & Kequan Zhang, 2016. "A Hybrid Method Based on Singular Spectrum Analysis, Firefly Algorithm, and BP Neural Network for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 9(10), pages 1-28, September.
    9. Liu, Hui & Tian, Hong-qi & Pan, Di-fu & Li, Yan-fei, 2013. "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks," Applied Energy, Elsevier, vol. 107(C), pages 191-208.
    10. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
    11. Marchesoni-Acland, Franco & Alonso-Suárez, Rodrigo, 2020. "Intra-day solar irradiation forecast using RLS filters and satellite images," Renewable Energy, Elsevier, vol. 161(C), pages 1140-1154.
    12. Alessia Caponera, 2021. "SPHARMA approximations for stationary functional time series on the sphere," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 609-634, October.
    13. Cervone, Guido & Clemente-Harding, Laura & Alessandrini, Stefano & Delle Monache, Luca, 2017. "Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble," Renewable Energy, Elsevier, vol. 108(C), pages 274-286.
    14. Pramesti Getut, 2023. "Parameter least-squares estimation for time-inhomogeneous Ornstein–Uhlenbeck process," Monte Carlo Methods and Applications, De Gruyter, vol. 29(1), pages 1-32, March.
    15. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    16. Liang Pei & Chunhui Wang & Liying Sun & Lili Wang, 2022. "Temporal and Spatial Variation (2001–2020) Characteristics of Wind Speed in the Water Erosion Area of the Typical Black Soil Region, Northeast China," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    17. Chao-Rong Chen & Unit Three Kartini, 2017. "k-Nearest Neighbor Neural Network Models for Very Short-Term Global Solar Irradiance Forecasting Based on Meteorological Data," Energies, MDPI, vol. 10(2), pages 1-18, February.
    18. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    19. Hanany Tolba & Nouha Dkhili & Julien Nou & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2020. "Multi-Horizon Forecasting of Global Horizontal Irradiance Using Online Gaussian Process Regression: A Kernel Study," Energies, MDPI, vol. 13(16), pages 1-23, August.
    20. Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2022. "A network of sky imagers for spatial solar irradiance assessment," Renewable Energy, Elsevier, vol. 187(C), pages 1009-1019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:111:y:2016:i:c:p:599-608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.