IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipbs0360544222026482.html
   My bibliography  Save this article

Parameter identification for lithium batteries: Model variable-coupling analysis and a novel cooperatively coevolving identification algorithm

Author

Listed:
  • Tang, Ruoli
  • Zhang, Shangyu
  • Zhang, Shihan
  • Zhang, Yan
  • Lai, Jingang

Abstract

In the operational control of renewable energy system, the efficient parameter identification for lithium battery is of great importance. In this study, the parameter identification of lithium battery is modelled as a large-scale global optimization problem with thousands of dimensionalities. In addition, the developed identification model is proved to be a partial-separable problem by comprehensively analysing its variable-coupling relationships, and the detailed proof is also provided. In order to overcome the high-dimensional characteristic of the developed model, a novel algorithm namely incomplete multi-context cooperatively coevolving PSO (IMCCPSO) is developed, in which some efficient algorithmic mechanisms are proposed: On one hand, the non-separable variables are grouped together with each of the separable-variable components, and the context vectors for separable and non-separable variables are discriminatively reconstituted for balancing the local and global exploration; On the other hand, the coevolving efficiency index is proposed for selecting the group-size values and coevolving rules dynamically and adaptively. Experimental results show that the developed methodology can effectively identify the parameters of the evaluated lithium battery bank under typical load profiles, and the developed IMCCPSO also outperforms the compared state-of-the-art algorithms on identification accuracy and robustness.

Suggested Citation

  • Tang, Ruoli & Zhang, Shangyu & Zhang, Shihan & Zhang, Yan & Lai, Jingang, 2023. "Parameter identification for lithium batteries: Model variable-coupling analysis and a novel cooperatively coevolving identification algorithm," Energy, Elsevier, vol. 263(PB).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026482
    DOI: 10.1016/j.energy.2022.125762
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222026482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuo Yang & Yugui Tang & Zhen Zhang, 2021. "Parameter Identification and State-of-Charge Estimation for Lithium-Ion Batteries Using Separated Time Scales and Extended Kalman Filter," Energies, MDPI, vol. 14(4), pages 1-15, February.
    2. He, Xitian & Sun, Bingxiang & Zhang, Weige & Fan, Xinyuan & Su, Xiaojia & Ruan, Haijun, 2022. "Multi-time scale variable-order equivalent circuit model for virtual battery considering initial polarization condition of lithium-ion battery," Energy, Elsevier, vol. 244(PB).
    3. Tang, Ruoli & An, Qing & Xu, Fan & Zhang, Xiaodi & Li, Xin & Lai, Jingang & Dong, Zhengcheng, 2020. "Optimal operation of hybrid energy system for intelligent ship: An ultrahigh-dimensional model and control method," Energy, Elsevier, vol. 211(C).
    4. Xiao Yang & Long Chen & Xing Xu & Wei Wang & Qiling Xu & Yuzhen Lin & Zhiguang Zhou, 2017. "Parameter Identification of Electrochemical Model for Vehicular Lithium-Ion Battery Based on Particle Swarm Optimization," Energies, MDPI, vol. 10(11), pages 1-16, November.
    5. Aktaş, Ahmet & Kırçiçek, Yağmur, 2020. "A novel optimal energy management strategy for offshore wind/marine current/battery/ultracapacitor hybrid renewable energy system," Energy, Elsevier, vol. 199(C).
    6. Tang, Ruoli & Li, Xin & Lai, Jingang, 2018. "A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization," Applied Energy, Elsevier, vol. 228(C), pages 254-264.
    7. Tang, Ruoli & Wu, Zhou & Li, Xin, 2018. "Optimal operation of photovoltaic/battery/diesel/cold-ironing hybrid energy system for maritime application," Energy, Elsevier, vol. 162(C), pages 697-714.
    8. Zheng, Fangdan & Xing, Yinjiao & Jiang, Jiuchun & Sun, Bingxiang & Kim, Jonghoon & Pecht, Michael, 2016. "Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 183(C), pages 513-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An, Qing & Peng, Jian, 2023. "Parameter identification of lithium battery pack based on novel cooperatively coevolving differential evolution algorithm," Renewable Energy, Elsevier, vol. 216(C).
    2. Tang, Ruoli & Zhang, Shihan & Zhang, Shangyu & Lai, Jingang & Zhang, Yan, 2023. "Semi-online parameter identification methodology for maritime power lithium batteries," Applied Energy, Elsevier, vol. 339(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Ruoli & Zhang, Shihan & Zhang, Shangyu & Lai, Jingang & Zhang, Yan, 2023. "Semi-online parameter identification methodology for maritime power lithium batteries," Applied Energy, Elsevier, vol. 339(C).
    2. An, Qing & Peng, Jian, 2023. "Parameter identification of lithium battery pack based on novel cooperatively coevolving differential evolution algorithm," Renewable Energy, Elsevier, vol. 216(C).
    3. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. He Yin & Hai Lan & Ying-Yi Hong & Zhuangwei Wang & Peng Cheng & Dan Li & Dong Guo, 2023. "A Comprehensive Review of Shipboard Power Systems with New Energy Sources," Energies, MDPI, vol. 16(5), pages 1-44, February.
    5. Tang, Ruoli & An, Qing & Xu, Fan & Zhang, Xiaodi & Li, Xin & Lai, Jingang & Dong, Zhengcheng, 2020. "Optimal operation of hybrid energy system for intelligent ship: An ultrahigh-dimensional model and control method," Energy, Elsevier, vol. 211(C).
    6. Tang, Ruoli & Lin, Qiao & Zhou, Jinxiang & Zhang, Shangyu & Lai, Jingang & Li, Xin & Dong, Zhengcheng, 2020. "Suppression strategy of short-term and long-term environmental disturbances for maritime photovoltaic system," Applied Energy, Elsevier, vol. 259(C).
    7. Yin, He & Wu, Jinghu & Zhang, Gang & Lan, Hai & Hong, Ying-Yi & Li, Dan, 2024. "Variable time-scale power scheduling of a River-Sea going renewable energy ship considering coupling variations in all-electric propulsion," Applied Energy, Elsevier, vol. 374(C).
    8. Yang, Kuo & Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2022. "A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism," Energy, Elsevier, vol. 244(PB).
    9. Xin Li & Xiaodi Zhang & Yuling Fan, 2019. "A Two-Step Framework for Energy Local Area Network Scheduling Problem with Electric Vehicles Based on Global–Local Optimization Method," Energies, MDPI, vol. 12(1), pages 1-17, January.
    10. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    11. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    12. Rodríguez-Gallegos, Carlos D. & Vinayagam, Lokesh & Gandhi, Oktoviano & Yagli, Gokhan Mert & Alvarez-Alvarado, Manuel S. & Srinivasan, Dipti & Reindl, Thomas & Panda, S.K., 2021. "Novel forecast-based dispatch strategy optimization for PV hybrid systems in real time," Energy, Elsevier, vol. 222(C).
    13. Wang, Jinggai & Li, Huanhuan & Yang, Zaili & Ge, Ying-En, 2024. "Shore power for reduction of shipping emission in port: A bibliometric analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    14. Banguero, Edison & Correcher, Antonio & Pérez-Navarro, Ángel & García, Emilio & Aristizabal, Andrés, 2020. "Diagnosis of a battery energy storage system based on principal component analysis," Renewable Energy, Elsevier, vol. 146(C), pages 2438-2449.
    15. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    16. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    17. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    18. Xu Lei & Xi Zhao & Guiping Wang & Weiyu Liu, 2019. "A Novel Temperature–Hysteresis Model for Power Battery of Electric Vehicles with an Adaptive Joint Estimator on State of Charge and Power," Energies, MDPI, vol. 12(19), pages 1-24, September.
    19. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    20. Wiegner, J.F. & Andreasson, L.M. & Kusters, J.E.H. & Nienhuis, R.M., 2024. "Interdisciplinary perspectives on offshore energy system integration in the North Sea: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.