IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222000585.html
   My bibliography  Save this article

Joint energy consumption optimization method for wing-diesel engine-powered hybrid ships towards a more energy-efficient shipping

Author

Listed:
  • Wang, Kai
  • Xue, Yu
  • Xu, Hao
  • Huang, Lianzhong
  • Ma, Ranqi
  • Zhang, Peng
  • Jiang, Xiaoli
  • Yuan, Yupeng
  • Negenborn, Rudy R.
  • Sun, Peiting

Abstract

Wing-diesel engine-powered hybrid ships can effectively reduce fuel consumption and CO2 emissions by using wind energy as the auxiliary driving power. The energy optimization management of the hybrid system can further improve the ship's energy efficiency. To achieve this purpose, it is significant to establish an effective energy consumption model for the energy optimization management of the hybrid system. Therefore, an energy consumption model is established based on the energy conversion analysis of the hybrid power system in this paper. This model can effectively describe the energy consumption of the hybrid ship under different navigational environmental conditions. Then, a joint optimization method of the wing attack angle and of the sailing speed for the hybrid ship is proposed by adopting a swarm intelligence optimization algorithm, in order to reduce energy consumption and CO2 emissions of the hybrid ship under different navigational environmental conditions. Finally, the energy consumption optimization potentials by adopting the hybrid power system and the proposed joint optimization method are analyzed. The results show that the energy consumption and CO2 emissions along a typical route can be reduced by about 4.5%. This study provides an important basis for future practical operations of wing-diesel engine-powered hybrid ships.

Suggested Citation

  • Wang, Kai & Xue, Yu & Xu, Hao & Huang, Lianzhong & Ma, Ranqi & Zhang, Peng & Jiang, Xiaoli & Yuan, Yupeng & Negenborn, Rudy R. & Sun, Peiting, 2022. "Joint energy consumption optimization method for wing-diesel engine-powered hybrid ships towards a more energy-efficient shipping," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222000585
    DOI: 10.1016/j.energy.2022.123155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222000585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Li, Qing & Long, Teng, 2018. "A design and experimental investigation of a large-scale solar energy/diesel generator powered hybrid ship," Energy, Elsevier, vol. 165(PA), pages 965-978.
    2. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Jafarzadeh, Sepideh & Utne, Ingrid Bouwer, 2014. "A framework to bridge the energy efficiency gap in shipping," Energy, Elsevier, vol. 69(C), pages 603-612.
    4. Bondarenko, Oleksiy & Fukuda, Tetsugo, 2020. "Development of a diesel engine’s digital twin for predicting propulsion system dynamics," Energy, Elsevier, vol. 196(C).
    5. Chi, Hongtao & Pedrielli, Giulia & Ng, Szu Hui & Kister, Thomas & Bressan, Stéphane, 2018. "A framework for real-time monitoring of energy efficiency of marine vessels," Energy, Elsevier, vol. 145(C), pages 246-260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Kai & Hua, Yu & Huang, Lianzhong & Guo, Xin & Liu, Xing & Ma, Zhongmin & Ma, Ranqi & Jiang, Xiaoli, 2023. "A novel GA-LSTM-based prediction method of ship energy usage based on the characteristics analysis of operational data," Energy, Elsevier, vol. 282(C).
    2. Ba, Jin & Wei, Wu & Zhao, Lun & Gang, Xiao & Dong, Wenzhi & Zhou, Tingyu, 2023. "Numerical simulation of trans-/near-/supercritical injection characteristics based on real fluid properties," Energy, Elsevier, vol. 278(C).
    3. Ruan, Zhang & Huang, Lianzhong & Wang, Kai & Ma, Ranqi & Wang, Zhongyi & Zhang, Rui & Zhao, Haoyang & Wang, Cong, 2024. "A novel prediction method of fuel consumption for wing-diesel hybrid vessels based on feature construction," Energy, Elsevier, vol. 286(C).
    4. He Yin & Hai Lan & Ying-Yi Hong & Zhuangwei Wang & Peng Cheng & Dan Li & Dong Guo, 2023. "A Comprehensive Review of Shipboard Power Systems with New Energy Sources," Energies, MDPI, vol. 16(5), pages 1-44, February.
    5. Barone, Giovanni & Buonomano, Annamaria & Del Papa, Gianluca & Maka, Robert & Palombo, Adolfo, 2023. "How to achieve energy efficiency and sustainability of large ships: a new tool to optimize the operation of on-board diesel generators," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
    2. ben Brahim, Till & Wiese, Frauke & Münster, Marie, 2019. "Pathways to climate-neutral shipping: A Danish case study," Energy, Elsevier, vol. 188(C).
    3. Henry Schwartz & Tomi Solakivi & Magnus Gustafsson, 2022. "Is There Business Potential for Sustainable Shipping? Price Premiums Needed to Cover Decarbonized Transportation," Sustainability, MDPI, vol. 14(10), pages 1-20, May.
    4. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    5. Michail Serris & Paraskevi Petrou & Isidoros Iakovidis & Sotiria Dimitrellou, 2023. "Techno-Economic and Environmental Evaluation of a Solar Energy System on a Ro-Ro Vessel for Sustainability," Energies, MDPI, vol. 16(18), pages 1-20, September.
    6. Xiangang Lan & Xiaode Zuo & Qin Tao, 2023. "Container Shipping Optimization under Different Carbon Emission Policies: A Case Study," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    7. Di Vaio, Assunta & Varriale, Luisa & Alvino, Federico, 2018. "Key performance indicators for developing environmentally sustainable and energy efficient ports: Evidence from Italy," Energy Policy, Elsevier, vol. 122(C), pages 229-240.
    8. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    9. Chi, Hongtao & Pedrielli, Giulia & Ng, Szu Hui & Kister, Thomas & Bressan, Stéphane, 2018. "A framework for real-time monitoring of energy efficiency of marine vessels," Energy, Elsevier, vol. 145(C), pages 246-260.
    10. Michail Cheliotis & Evangelos Boulougouris & Nikoletta L Trivyza & Gerasimos Theotokatos & George Livanos & George Mantalos & Athanasios Stubos & Emmanuel Stamatakis & Alexandros Venetsanos, 2021. "Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry," Energies, MDPI, vol. 14(11), pages 1-20, May.
    11. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Dai, Lei & Hu, Hao & Wang, Zhaojing, 2020. "Is Shore Side Electricity greener? An environmental analysis and policy implications," Energy Policy, Elsevier, vol. 137(C).
    13. Jan Hollmann & Marco Fuchs & Carsten Spieker & Ulrich Gardemann & Michael Steffen & Xing Luo & Stephan Kabelac, 2022. "System Simulation and Analysis of an LNG-Fueled SOFC System Using Additively Manufactured High Temperature Heat Exchangers," Energies, MDPI, vol. 15(3), pages 1-29, January.
    14. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    15. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    16. Wang, Zhuang & Chen, Li & Wang, Bin & Huang, Lianzhong & Wang, Kai & Ma, Ranqi, 2023. "Integrated optimization of speed schedule and energy management for a hybrid electric cruise ship considering environmental factors," Energy, Elsevier, vol. 282(C).
    17. Jiang, Meizhi & Wang, Benmei & Hao, Yingjun & Chen, Shijun & Wen, Yuanqiao & Yang, Zaili, 2024. "Quantification of CO2 emissions in transportation: An empirical analysis by modal shift from road to waterway transport in Zhejiang, China," Transport Policy, Elsevier, vol. 145(C), pages 177-186.
    18. Pusnik, Matevz & Al-Mansour, Fouad & Sucic, Boris & Gubina, A.F., 2016. "Gap analysis of industrial energy management systems in Slovenia," Energy, Elsevier, vol. 108(C), pages 41-49.
    19. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    20. Michael E. Stamatakis & Maria G. Ioannides, 2021. "State Transitions Logical Design for Hybrid Energy Generation with Renewable Energy Sources in LNG Ship," Energies, MDPI, vol. 14(22), pages 1-26, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222000585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.