IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6846-d1249201.html
   My bibliography  Save this article

Modelling and Estimation in Lithium-Ion Batteries: A Literature Review

Author

Listed:
  • Miquel Martí-Florences

    (ETSEIB, ESAII, Universitat Politécnica de Catalunya, Avinguda Diagonal, 647, 08028 Barcelona, Spain
    Insitut de Robòtica i Informàtica Industrial CSIC-UPC, C/Pau Gargallo, 14, 08028 Barcelona, Spain)

  • Andreu Cecilia

    (ETSEIB, ESAII, Universitat Politécnica de Catalunya, Avinguda Diagonal, 647, 08028 Barcelona, Spain)

  • Ramon Costa-Castelló

    (ETSEIB, ESAII, Universitat Politécnica de Catalunya, Avinguda Diagonal, 647, 08028 Barcelona, Spain)

Abstract

Lithium-ion batteries are widely recognised as the leading technology for electrochemical energy storage. Their applications in the automotive industry and integration with renewable energy grids highlight their current significance and anticipate their substantial future impact. However, battery management systems, which are in charge of the monitoring and control of batteries, need to consider several states, like the state of charge and the state of health, which cannot be directly measured. To estimate these indicators, algorithms utilising mathematical models of the battery and basic measurements like voltage, current or temperature are employed. This review focuses on a comprehensive examination of various models, from complex but close to the physicochemical phenomena to computationally simpler but ignorant of the physics; the estimation problem and a formal basis for the development of algorithms; and algorithms used in Li-ion battery monitoring. The objective is to provide a practical guide that elucidates the different models and helps to navigate the different existing estimation techniques, simplifying the process for the development of new Li-ion battery applications.

Suggested Citation

  • Miquel Martí-Florences & Andreu Cecilia & Ramon Costa-Castelló, 2023. "Modelling and Estimation in Lithium-Ion Batteries: A Literature Review," Energies, MDPI, vol. 16(19), pages 1-36, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6846-:d:1249201
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6846/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6846/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yigeng Huangfu & Jiani Xu & Dongdong Zhao & Yuntian Liu & Fei Gao, 2018. "A Novel Battery State of Charge Estimation Method Based on a Super-Twisting Sliding Mode Observer," Energies, MDPI, vol. 11(5), pages 1-21, May.
    2. Li, Weihan & Cao, Decheng & Jöst, Dominik & Ringbeck, Florian & Kuipers, Matthias & Frie, Fabian & Sauer, Dirk Uwe, 2020. "Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries," Applied Energy, Elsevier, vol. 269(C).
    3. Benedikt Rzepka & Simon Bischof & Thomas Blank, 2021. "Implementing an Extended Kalman Filter for SoC Estimation of a Li-Ion Battery with Hysteresis: A Step-by-Step Guide," Energies, MDPI, vol. 14(13), pages 1-17, June.
    4. Hongyuan Yuan & Jingan Liu & Yu Zhou & Hailong Pei, 2023. "State of Charge Estimation of Lithium Battery Based on Integrated Kalman Filter Framework and Machine Learning Algorithm," Energies, MDPI, vol. 16(5), pages 1-16, February.
    5. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    6. Peng, Jiankun & Luo, Jiayi & He, Hongwen & Lu, Bing, 2019. "An improved state of charge estimation method based on cubature Kalman filter for lithium-ion batteries," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Miaomiao Zeng & Peng Zhang & Yang Yang & Changjun Xie & Ying Shi, 2019. "SOC and SOH Joint Estimation of the Power Batteries Based on Fuzzy Unscented Kalman Filtering Algorithm," Energies, MDPI, vol. 12(16), pages 1-15, August.
    8. Bi, Yalan & Choe, Song-Yul, 2020. "An adaptive sigma-point Kalman filter with state equality constraints for online state-of-charge estimation of a Li(NiMnCo)O2/Carbon battery using a reduced-order electrochemical model," Applied Energy, Elsevier, vol. 258(C).
    9. Shifei Yuan & Hongjie Wu & Chengliang Yin, 2013. "State of Charge Estimation Using the Extended Kalman Filter for Battery Management Systems Based on the ARX Battery Model," Energies, MDPI, vol. 6(1), pages 1-27, January.
    10. Alejandro Clemente & Ramon Costa-Castelló, 2020. "Redox Flow Batteries: A Literature Review Oriented to Automatic Control," Energies, MDPI, vol. 13(17), pages 1-31, September.
    11. Qi Wang & Yinsheng Luo & Xiaoxin Han, 2019. "Research on estimation model of the battery state of charge in a hybrid electric vehicle based on the classification and regression tree," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 25(4), pages 376-396, July.
    12. Basu, Suman & Hariharan, Krishnan S. & Kolake, Subramanya Mayya & Song, Taewon & Sohn, Dong Kee & Yeo, Taejung, 2016. "Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system," Applied Energy, Elsevier, vol. 181(C), pages 1-13.
    13. Bi, Jun & Zhang, Ting & Yu, Haiyang & Kang, Yanqiong, 2016. "State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter," Applied Energy, Elsevier, vol. 182(C), pages 558-568.
    14. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    15. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    16. Sun, Fengchun & Hu, Xiaosong & Zou, Yuan & Li, Siguang, 2011. "Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles," Energy, Elsevier, vol. 36(5), pages 3531-3540.
    17. Kiarash Movassagh & Arif Raihan & Balakumar Balasingam & Krishna Pattipati, 2021. "A Critical Look at Coulomb Counting Approach for State of Charge Estimation in Batteries," Energies, MDPI, vol. 14(14), pages 1-33, July.
    18. Hsu, Chia-Wei & Xiong, Rui & Chen, Nan-Yow & Li, Ju & Tsou, Nien-Ti, 2022. "Deep neural network battery life and voltage prediction by using data of one cycle only," Applied Energy, Elsevier, vol. 306(PB).
    19. Van Quan Dao & Minh-Chau Dinh & Chang Soon Kim & Minwon Park & Chil-Hoon Doh & Jeong Hyo Bae & Myung-Kwan Lee & Jianyong Liu & Zhiguo Bai, 2021. "Design of an Effective State of Charge Estimation Method for a Lithium-Ion Battery Pack Using Extended Kalman Filter and Artificial Neural Network," Energies, MDPI, vol. 14(9), pages 1-20, May.
    20. He, Lin & Wang, Yangyang & Wei, Yujiang & Wang, Mingwei & Hu, Xiaosong & Shi, Qin, 2022. "An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery," Energy, Elsevier, vol. 244(PA).
    21. Hu, Chao & Youn, Byeng D. & Chung, Jaesik, 2012. "A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation," Applied Energy, Elsevier, vol. 92(C), pages 694-704.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhang Fan & Qiongbin Lin & Ruochen Huang, 2024. "Non-Invasive Method-Based Estimation of Battery State-of-Health with Dynamical Response Characteristics of Load Surges," Energies, MDPI, vol. 17(3), pages 1-17, January.
    2. Manuel R. Arahal & Alfredo Pérez Vega-Leal & Manuel G. Satué & Sergio Esteban, 2024. "Assessing SOC Estimations via Reverse-Time Kalman for Small Unmanned Aircraft," Energies, MDPI, vol. 17(20), pages 1-12, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    3. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Li, Huan & Xu, Wenhua & Fernandez, Carlos, 2022. "An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 260(C).
    5. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    6. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Yong Tian & Bizhong Xia & Mingwang Wang & Wei Sun & Zhihui Xu, 2014. "Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-19, December.
    8. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    9. Zheng, Linfeng & Zhu, Jianguo & Lu, Dylan Dah-Chuan & Wang, Guoxiu & He, Tingting, 2018. "Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries," Energy, Elsevier, vol. 150(C), pages 759-769.
    10. Khaleghi, Sahar & Hosen, Md Sazzad & Karimi, Danial & Behi, Hamidreza & Beheshti, S. Hamidreza & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "Developing an online data-driven approach for prognostics and health management of lithium-ion batteries," Applied Energy, Elsevier, vol. 308(C).
    11. Li, Weihan & Fan, Yue & Ringbeck, Florian & Jöst, Dominik & Sauer, Dirk Uwe, 2022. "Unlocking electrochemical model-based online power prediction for lithium-ion batteries via Gaussian process regression," Applied Energy, Elsevier, vol. 306(PB).
    12. Zheng, Linfeng & Zhu, Jianguo & Wang, Guoxiu & Lu, Dylan Dah-Chuan & He, Tingting, 2018. "Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter," Energy, Elsevier, vol. 158(C), pages 1028-1037.
    13. Song, Ziyou & Hou, Jun & Li, Xuefeng & Wu, Xiaogang & Hu, Xiaosong & Hofmann, Heath & Sun, Jing, 2020. "The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection," Energy, Elsevier, vol. 193(C).
    14. Jiang, Bo & Dai, Haifeng & Wei, Xuezhe & Xu, Tianjiao, 2019. "Joint estimation of lithium-ion battery state of charge and capacity within an adaptive variable multi-timescale framework considering current measurement offset," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Haifeng Dai & Bo Jiang & Xuezhe Wei, 2018. "Impedance Characterization and Modeling of Lithium-Ion Batteries Considering the Internal Temperature Gradient," Energies, MDPI, vol. 11(1), pages 1-18, January.
    16. Bizhong Xia & Haiqing Wang & Yong Tian & Mingwang Wang & Wei Sun & Zhihui Xu, 2015. "State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter," Energies, MDPI, vol. 8(6), pages 1-21, June.
    17. Neha Bhushan & Saad Mekhilef & Kok Soon Tey & Mohamed Shaaban & Mehdi Seyedmahmoudian & Alex Stojcevski, 2022. "Overview of Model- and Non-Model-Based Online Battery Management Systems for Electric Vehicle Applications: A Comprehensive Review of Experimental and Simulation Studies," Sustainability, MDPI, vol. 14(23), pages 1-31, November.
    18. Song, Yuchen & Liu, Datong & Liao, Haitao & Peng, Yu, 2020. "A hybrid statistical data-driven method for on-line joint state estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 261(C).
    19. Zhibing Zeng & Jindong Tian & Dong Li & Yong Tian, 2018. "An Online State of Charge Estimation Algorithm for Lithium-Ion Batteries Using an Improved Adaptive Cubature Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-16, January.
    20. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6846-:d:1249201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.