IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2155-d1077858.html
   My bibliography  Save this article

State of Charge Estimation of Lithium Battery Based on Integrated Kalman Filter Framework and Machine Learning Algorithm

Author

Listed:
  • Hongyuan Yuan

    (School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China
    China Energy Construction Group Guangdong Electric Power Design and Research Institute Co., Ltd., Guangzhou 510700, China)

  • Jingan Liu

    (School of Information Technology, Jiangxi University of Finance and Economics, Nanchang 330013, China)

  • Yu Zhou

    (China Energy Construction Group Guangdong Electric Power Design and Research Institute Co., Ltd., Guangzhou 510700, China)

  • Hailong Pei

    (School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China)

Abstract

Research on batteries’ State of Charge (SOC) estimation for equivalent circuit models based on the Kalman Filter (KF) framework and machine learning algorithms remains relatively limited. Most studies are focused on a few machine learning algorithms and do not present comprehensive analysis and comparison. Furthermore, most of them focus on obtaining the state space parameters of the Kalman filter frame algorithm models using machine learning algorithms and then substituting the state space parameters into the Kalman filter frame algorithm to estimate the SOC. Such algorithms are highly coupled, and present high complexity and low practicability. This study aims to integrate machine learning with the Kalman filter frame algorithm, and to estimate the final SOC by using different combinations of the input, output, and intermediate variable values of five Kalman filter frame algorithms as the input of the machine learning algorithms of six main streams. These are: linear regression, support vector Regression, XGBoost, AdaBoost, random forest, and LSTM; the algorithm coupling is lower for two-way parameter adjustment and is not applied between the machine learning and Kalman filtering framework algorithms. The results demonstrate that the integrated learning algorithm significantly improves the estimation accuracy when compared to the pure Kalman filter framework or the machine learning algorithms. Among the various integrated algorithms, the random forest and Kalman filter framework presents the highest estimation accuracy along with good real-time performance. Therefore, it can be implemented in various engineering applications.

Suggested Citation

  • Hongyuan Yuan & Jingan Liu & Yu Zhou & Hailong Pei, 2023. "State of Charge Estimation of Lithium Battery Based on Integrated Kalman Filter Framework and Machine Learning Algorithm," Energies, MDPI, vol. 16(5), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2155-:d:1077858
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ran Li & Hui Sun & Xue Wei & Weiwen Ta & Haiying Wang, 2022. "Lithium Battery State-of-Charge Estimation Based on AdaBoost.Rt-RNN," Energies, MDPI, vol. 15(16), pages 1-15, August.
    2. Alexandre Lucas & Ricardo Barranco & Nazir Refa, 2019. "EV Idle Time Estimation on Charging Infrastructure, Comparing Supervised Machine Learning Regressions," Energies, MDPI, vol. 12(2), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Can Ding & Qing Guo & Lulu Zhang & Tao Wang, 2024. "Intelligent Learning Method for Capacity Estimation of Lithium-Ion Batteries Based on Partial Charging Curves," Energies, MDPI, vol. 17(11), pages 1-13, May.
    2. Miquel Martí-Florences & Andreu Cecilia & Ramon Costa-Castelló, 2023. "Modelling and Estimation in Lithium-Ion Batteries: A Literature Review," Energies, MDPI, vol. 16(19), pages 1-36, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    2. Milan Straka & Pasquale De Falco & Gabriella Ferruzzi & Daniela Proto & Gijs van der Poel & Shahab Khormali & v{L}ubov{s} Buzna, 2019. "Predicting popularity of EV charging infrastructure from GIS data," Papers 1910.02498, arXiv.org.
    3. Adrian Ostermann & Yann Fabel & Kim Ouan & Hyein Koo, 2022. "Forecasting Charging Point Occupancy Using Supervised Learning Algorithms," Energies, MDPI, vol. 15(9), pages 1-23, May.
    4. Kantapich Preedakorn & David Butler & Jörn Mehnen, 2023. "Challenges for the Adoption of Electric Vehicles in Thailand: Potential Impacts, Barriers, and Public Policy Recommendations," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    5. Ruslan Abdulkadirov & Pavel Lyakhov & Nikolay Nagornov, 2023. "Survey of Optimization Algorithms in Modern Neural Networks," Mathematics, MDPI, vol. 11(11), pages 1-37, May.
    6. Mengting Yao & Yun Zhu & Junjie Li & Hua Wei & Penghui He, 2019. "Research on Predicting Line Loss Rate in Low Voltage Distribution Network Based on Gradient Boosting Decision Tree," Energies, MDPI, vol. 12(13), pages 1-14, June.
    7. Afentoulis, Konstantinos D. & Bampos, Zafeirios N. & Vagropoulos, Stylianos I. & Keranidis, Stratos D. & Biskas, Pantelis N., 2022. "Smart charging business model framework for electric vehicle aggregators," Applied Energy, Elsevier, vol. 328(C).
    8. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    9. Athanasios Paraskevas & Dimitrios Aletras & Antonios Chrysopoulos & Antonios Marinopoulos & Dimitrios I. Doukas, 2022. "Optimal Management for EV Charging Stations: A Win–Win Strategy for Different Stakeholders Using Constrained Deep Q-Learning," Energies, MDPI, vol. 15(7), pages 1-24, March.
    10. Einolander, Johannes & Lahdelma, Risto, 2022. "Explicit demand response potential in electric vehicle charging networks: Event-based simulation based on the multivariate copula procedure," Energy, Elsevier, vol. 256(C).
    11. Sanchari Deb, 2021. "Machine Learning for Solving Charging Infrastructure Planning Problems: A Comprehensive Review," Energies, MDPI, vol. 14(23), pages 1-19, November.
    12. Einolander, Johannes & Lahdelma, Risto, 2022. "Multivariate copula procedure for electric vehicle charging event simulation," Energy, Elsevier, vol. 238(PA).
    13. George Konstantinidis & Emmanuel Karapidakis & Alexandros Paspatis, 2022. "Mitigating the Impact of an Official PEV Charger Deployment Plan on an Urban Grid," Energies, MDPI, vol. 15(4), pages 1-18, February.
    14. Chen, Jiahui & Wang, Fang & He, Xiaoyi & Liang, Xinyu & Huang, Junling & Zhang, Shaojun & Wu, Ye, 2022. "Emission mitigation potential from coordinated charging schemes for future private electric vehicles," Applied Energy, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2155-:d:1077858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.