State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.08.138
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Burgos-Mellado, Claudio & Orchard, Marcos E. & Kazerani, Mehrdad & Cárdenas, Roberto & Sáez, Doris, 2016. "Particle-filtering-based estimation of maximum available power state in Lithium-Ion batteries," Applied Energy, Elsevier, vol. 161(C), pages 349-363.
- Dong, Guangzhong & Wei, Jingwen & Zhang, Chenbin & Chen, Zonghai, 2016. "Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method," Applied Energy, Elsevier, vol. 162(C), pages 163-171.
- Song, Ziyou & Hofmann, Heath & Li, Jianqiu & Han, Xuebing & Ouyang, Minggao, 2015. "Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach," Applied Energy, Elsevier, vol. 139(C), pages 151-162.
- You, Gae-won & Park, Sangdo & Oh, Dukjin, 2016. "Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach," Applied Energy, Elsevier, vol. 176(C), pages 92-103.
- Saeed Sepasi & Leon R. Roose & Marc M. Matsuura, 2015. "Extended Kalman Filter with a Fuzzy Method for Accurate Battery Pack State of Charge Estimation," Energies, MDPI, vol. 8(6), pages 1-17, June.
- Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
- Marongiu, Andrea & Roscher, Marco & Sauer, Dirk Uwe, 2015. "Influence of the vehicle-to-grid strategy on the aging behavior of lithium battery electric vehicles," Applied Energy, Elsevier, vol. 137(C), pages 899-912.
- Li, Xue & Jiang, Jiuchun & Wang, Le Yi & Chen, Dafen & Zhang, Yanru & Zhang, Caiping, 2016. "A capacity model based on charging process for state of health estimation of lithium ion batteries," Applied Energy, Elsevier, vol. 177(C), pages 537-543.
- Kotub Uddin & Alessandro Picarelli & Christopher Lyness & Nigel Taylor & James Marco, 2014. "An Acausal Li-Ion Battery Pack Model for Automotive Applications," Energies, MDPI, vol. 7(9), pages 1-26, August.
- Zou, Yuan & Li, Shengbo Eben & Shao, Bing & Wang, Baojin, 2016. "State-space model with non-integer order derivatives for lithium-ion battery," Applied Energy, Elsevier, vol. 161(C), pages 330-336.
- Wang, Yujie & Zhang, Chenbin & Chen, Zonghai & Xie, Jing & Zhang, Xu, 2015. "A novel active equalization method for lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 145(C), pages 36-42.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
- Zhao, Yang & Liu, Peng & Wang, Zhenpo & Zhang, Lei & Hong, Jichao, 2017. "Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods," Applied Energy, Elsevier, vol. 207(C), pages 354-362.
- Lyu, Zhiqiang & Wang, Geng & Gao, Renjing, 2022. "Synchronous state of health estimation and remaining useful lifetime prediction of Li-Ion battery through optimized relevance vector machine framework," Energy, Elsevier, vol. 251(C).
- Deng, Yuanwang & Ying, Hejie & E, Jiaqiang & Zhu, Hao & Wei, Kexiang & Chen, Jingwei & Zhang, Feng & Liao, Gaoliang, 2019. "Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries," Energy, Elsevier, vol. 176(C), pages 91-102.
- Li, Yang & Wang, Shunli & Chen, Lei & Qi, Chuangshi & Fernandez, Carlos, 2023. "Multiple layer kernel extreme learning machine modeling and eugenics genetic sparrow search algorithm for the state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 282(C).
- Miquel Martí-Florences & Andreu Cecilia & Ramon Costa-Castelló, 2023. "Modelling and Estimation in Lithium-Ion Batteries: A Literature Review," Energies, MDPI, vol. 16(19), pages 1-36, September.
- Li, Junfu & Wang, Lixin & Lyu, Chao & Wang, Dafang & Pecht, Michael, 2019. "Parameter updating method of a simplified first principles-thermal coupling model for lithium-ion batteries," Applied Energy, Elsevier, vol. 256(C).
- Chen, Lin & Wang, Huimin & Liu, Bohao & Wang, Yijue & Ding, Yunhui & Pan, Haihong, 2021. "Battery state-of-health estimation based on a metabolic extreme learning machine combining degradation state model and error compensation," Energy, Elsevier, vol. 215(PA).
- Shao-Xun Liu & Ya-Fu Zhou & Yan-Liang Liu & Jing Lian & Li-Jian Huang, 2021. "A Method for Battery Health Estimation Based on Charging Time Segment," Energies, MDPI, vol. 14(9), pages 1-15, May.
- Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Lei, Zhenzhen & Zhang, Yuanjian, 2023. "State of health estimation for lithium-ion batteries based on hybrid attention and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
- Li, Shuangqi & He, Hongwen & Zhao, Pengfei & Cheng, Shuang, 2022. "Health-Conscious vehicle battery state estimation based on deep transfer learning," Applied Energy, Elsevier, vol. 316(C).
- Wu, Muyao & Zhong, Yiming & Wu, Ji & Wang, Yuqing & Wang, Li, 2023. "State of health estimation of the lithium-ion power battery based on the principal component analysis-particle swarm optimization-back propagation neural network," Energy, Elsevier, vol. 283(C).
- Haochen Qin & Xuexin Fan & Yaxiang Fan & Ruitian Wang & Qianyi Shang & Dong Zhang, 2023. "A Computationally Efficient Approach for the State-of-Health Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 16(14), pages 1-23, July.
- Shuo Sun & Junzhong Sun & Zongliang Wang & Zhiyong Zhou & Wei Cai, 2022. "Prediction of Battery SOH by CNN-BiLSTM Network Fused with Attention Mechanism," Energies, MDPI, vol. 15(12), pages 1-17, June.
- Pan, Haihong & Lü, Zhiqiang & Wang, Huimin & Wei, Haiyan & Chen, Lin, 2018. "Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine," Energy, Elsevier, vol. 160(C), pages 466-477.
- Khaleghi, Sahar & Karimi, Danial & Beheshti, S. Hamidreza & Hosen, Md. Sazzad & Behi, Hamidreza & Berecibar, Maitane & Van Mierlo, Joeri, 2021. "Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network," Applied Energy, Elsevier, vol. 282(PA).
- Shyang-Chyuan Fang & Bwo-Ren Ke & Chen-Yuan Chung, 2017. "Minimization of Construction Costs for an All Battery-Swapping Electric-Bus Transportation System: Comparison with an All Plug-In System," Energies, MDPI, vol. 10(7), pages 1-20, June.
- Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Rahbari, Omid & Omar, Noshin & Firouz, Yousef & Rosen, Marc A. & Goutam, Shovon & Van Den Bossche, Peter & Van Mierlo, Joeri, 2018. "A novel state of charge and capacity estimation technique for electric vehicles connected to a smart grid based on inverse theory and a metaheuristic algorithm," Energy, Elsevier, vol. 155(C), pages 1047-1058.
- Xingxing Wang & Peilin Ye & Shengren Liu & Yu Zhu & Yelin Deng & Yinnan Yuan & Hongjun Ni, 2023. "Research Progress of Battery Life Prediction Methods Based on Physical Model," Energies, MDPI, vol. 16(9), pages 1-20, April.
- Khaleghi, Sahar & Hosen, Md Sazzad & Karimi, Danial & Behi, Hamidreza & Beheshti, S. Hamidreza & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "Developing an online data-driven approach for prognostics and health management of lithium-ion batteries," Applied Energy, Elsevier, vol. 308(C).
- Li, Shuangqi & He, Hongwen & Zhao, Pengfei & Cheng, Shuang, 2022. "Data cleaning and restoring method for vehicle battery big data platform," Applied Energy, Elsevier, vol. 320(C).
- Hong, Jichao & Li, Kerui & Liang, Fengwei & Yang, Haixu & Zhang, Chi & Yang, Qianqian & Wang, Jiegang, 2024. "A novel state of health prediction method for battery system in real-world vehicles based on gated recurrent unit neural networks," Energy, Elsevier, vol. 289(C).
- Wu, Muyao & Wang, Li & Wu, Ji, 2023. "State of health estimation of the LiFePO4 power battery based on the forgetting factor recursive Total Least Squares and the temperature correction," Energy, Elsevier, vol. 282(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
- Ouyang, Minggao & Feng, Xuning & Han, Xuebing & Lu, Languang & Li, Zhe & He, Xiangming, 2016. "A dynamic capacity degradation model and its applications considering varying load for a large format Li-ion battery," Applied Energy, Elsevier, vol. 165(C), pages 48-59.
- Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
- Wang, Shunli & Shang, Liping & Li, Zhanfeng & Deng, Hu & Li, Jianchao, 2016. "Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation," Applied Energy, Elsevier, vol. 166(C), pages 44-58.
- Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
- Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
- Zheng, Linfeng & Zhu, Jianguo & Wang, Guoxiu & Lu, Dylan Dah-Chuan & He, Tingting, 2018. "Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter," Energy, Elsevier, vol. 158(C), pages 1028-1037.
- Marongiu, Andrea & Nußbaum, Felix Gerd Wilhelm & Waag, Wladislaw & Garmendia, Maitane & Sauer, Dirk Uwe, 2016. "Comprehensive study of the influence of aging on the hysteresis behavior of a lithium iron phosphate cathode-based lithium ion battery – An experimental investigation of the hysteresis," Applied Energy, Elsevier, vol. 171(C), pages 629-645.
- Zheng, Yuejiu & Ouyang, Minggao & Li, Xiangjun & Lu, Languang & Li, Jianqiu & Zhou, Long & Zhang, Zhendong, 2016. "Recording frequency optimization for massive battery data storage in battery management systems," Applied Energy, Elsevier, vol. 183(C), pages 380-389.
- Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
- Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
- Cheng, Yujie & Song, Dengwei & Wang, Zhenya & Lu, Chen & Zerhouni, Noureddine, 2020. "An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation," Applied Energy, Elsevier, vol. 266(C).
- Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
- Tang, Xiaopeng & Liu, Boyang & Lv, Zhou & Gao, Furong, 2017. "Observer based battery SOC estimation: Using multi-gain-switching approach," Applied Energy, Elsevier, vol. 204(C), pages 1275-1283.
- Wang, Zhenpo & Hong, Jichao & Liu, Peng & Zhang, Lei, 2017. "Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles," Applied Energy, Elsevier, vol. 196(C), pages 289-302.
- Lin, Cheng & Gong, Xinle & Xiong, Rui & Cheng, Xingqun, 2017. "A novel H∞ and EKF joint estimation method for determining the center of gravity position of electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 609-616.
- Wei, Zhongbao & Lim, Tuti Mariana & Skyllas-Kazacos, Maria & Wai, Nyunt & Tseng, King Jet, 2016. "Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery," Applied Energy, Elsevier, vol. 172(C), pages 169-179.
- Ansari, Amir Babak & Esfahanian, Vahid & Torabi, Farschad, 2016. "Discharge, rest and charge simulation of lead-acid batteries using an efficient reduced order model based on proper orthogonal decomposition," Applied Energy, Elsevier, vol. 173(C), pages 152-167.
More about this item
Keywords
State of health; Battery pack model; Least-squares estimation; Particle filter algorithm; Genetic algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:182:y:2016:i:c:p:558-568. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.