IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p62-d1009957.html
   My bibliography  Save this article

Reliability Estimation for Dependent Left-Truncated and Right-Censored Competing Risks Data with Illustrations

Author

Listed:
  • Zhiyuan Zuo

    (School of Mathematics, Yunnan Normal University, Kunming 650500, China)

  • Liang Wang

    (School of Mathematics, Yunnan Normal University, Kunming 650500, China)

  • Yuhlong Lio

    (Department of Mathematical Sciences, University of South Dakota, Vermillion, SD 57069, USA)

Abstract

In this paper, a competing risks model with dependent causes of failure is considered under left-truncated and right-censoring scenario. When the dependent failure causes follow a Marshall–Olkin bivariate exponential distribution, estimation of model parameters and reliability indices are proposed from classic and Bayesian approaches, respectively. Maximum likelihood estimators and approximate confidence intervals are constructed, and conventional Bayesian point and interval estimations are discussed as well. In addition, E-Bayesian estimators are proposed and their asymptotic behaviors have been investigated. Further, another objective-Bayesian analysis is also proposed when a noninformative probability matching prior is used. Finally, extensive simulation studies are carried out to investigate the performance of different methods. Two real data examples are presented to illustrate the applicability.

Suggested Citation

  • Zhiyuan Zuo & Liang Wang & Yuhlong Lio, 2022. "Reliability Estimation for Dependent Left-Truncated and Right-Censored Competing Risks Data with Illustrations," Energies, MDPI, vol. 16(1), pages 1-25, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:62-:d:1009957
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/62/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/62/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chunjie Wang & Jingjing Jiang & Linlin Luo & Shuying Wang, 2021. "Bayesian analysis of the Box-Cox transformation model based on left-truncated and right-censored data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 48(8), pages 1429-1441, June.
    2. Balakrishnan, N. & Mitra, Debanjan, 2012. "Left truncated and right censored Weibull data and likelihood inference with an illustration," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4011-4025.
    3. Kundu, Debasis & Mitra, Debanjan, 2016. "Bayesian inference of Weibull distribution based on left truncated and right censored data," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 38-50.
    4. Rafiee, Koosha & Feng, Qianmei & Coit, David W., 2017. "Reliability assessment of competing risks with generalized mixed shock models," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 1-11.
    5. Zhang, Chunfang & Wang, Liang & Bai, Xuchao & Huang, Jianan, 2022. "Bayesian reliability analysis for copula based step-stress partially accelerated dependent competing risks model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    6. Hamed Lorvand & Alireza Nematollahi & Mohammad Hossien Poursaeed, 2020. "Life distribution properties of a new δ - shock model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(12), pages 3010-3025, June.
    7. Jia-Han Shih & Wei Lee & Li-Hsien Sun & Takeshi Emura, 2019. "Fitting competing risks data to bivariate Pareto models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(5), pages 1193-1220, March.
    8. Paolo Frumento & Matteo Bottai, 2017. "Parametric modeling of quantile regression coefficient functions with censored and truncated data," Biometrics, The International Biometric Society, vol. 73(4), pages 1179-1188, December.
    9. Fabrizio Durante, 2009. "Construction of non-exchangeable bivariate distribution functions," Statistical Papers, Springer, vol. 50(2), pages 383-391, March.
    10. Ranjan, Rakesh & Sen, Rijji & Upadhyay, Satyanshu K., 2021. "Bayes analysis of some important lifetime models using MCMC based approaches when the observations are left truncated and right censored," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    11. Kundu, Debasis & Mitra, Debanjan & Ganguly, Ayon, 2017. "Analysis of left truncated and right censored competing risks data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 12-26.
    12. Chiung-Yu Huang & Jing Qin, 2013. "Semiparametric estimation for the additive hazards model with left-truncated and right-censored data," Biometrika, Biometrika Trust, vol. 100(4), pages 877-888.
    13. Krupskii, Pavel & Joe, Harry, 2020. "Flexible copula models with dynamic dependence and application to financial data," Econometrics and Statistics, Elsevier, vol. 16(C), pages 148-167.
    14. Jia-Han Shih & Takeshi Emura, 2018. "Likelihood-based inference for bivariate latent failure time models with competing risks under the generalized FGM copula," Computational Statistics, Springer, vol. 33(3), pages 1293-1323, September.
    15. Guan, Qiang & Tang, Yincai & Xu, Ancha, 2013. "Objective Bayesian analysis for bivariate Marshall–Olkin exponential distribution," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 299-313.
    16. Wang, Liang & Tripathi, Yogesh Mani & Dey, Sanku & Zhang, Chunfang & Wu, Ke, 2022. "Analysis of dependent left-truncated and right-censored competing risks data with partially observed failure causes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 285-307.
    17. Sharon Varghese A & V. S. Vaidyanathan, 2020. "Parameter estimation of Lindley step stress model with independent competing risk under type 1 censoring," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(12), pages 3026-3043, June.
    18. Ming Han, 2020. "E-Bayesian estimation and its E-posterior risk of the exponential distribution parameter based on complete and type I censored samples," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(8), pages 1858-1872, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hirofumi Michimae & Takeshi Emura, 2022. "Likelihood Inference for Copula Models Based on Left-Truncated and Competing Risks Data from Field Studies," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    2. Nanami Taketomi & Kazuki Yamamoto & Christophe Chesneau & Takeshi Emura, 2022. "Parametric Distributions for Survival and Reliability Analyses, a Review and Historical Sketch," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    3. Ke Wu & Liang Wang & Li Yan & Yuhlong Lio, 2021. "Statistical Inference of Left Truncated and Right Censored Data from Marshall–Olkin Bivariate Rayleigh Distribution," Mathematics, MDPI, vol. 9(21), pages 1-24, October.
    4. Prakash Chandra & Arvind Kumar Alok & Yogesh Mani Tripathi & Liang Wang, 2024. "Inference for A Generalized Family of Distributions Under Partially Observed Left Truncated and Right Censored Competing Risks Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 809-844, November.
    5. Xifan Song & Ziyu Xiong & Wenhao Gui, 2022. "Parameter Estimation of Exponentiated Half-Logistic Distribution for Left-Truncated and Right-Censored Data," Mathematics, MDPI, vol. 10(20), pages 1-26, October.
    6. Zhang, Chunfang & Wang, Liang & Bai, Xuchao & Huang, Jianan, 2022. "Bayesian reliability analysis for copula based step-stress partially accelerated dependent competing risks model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    7. Wang, Liang & Tripathi, Yogesh Mani & Dey, Sanku & Zhang, Chunfang & Wu, Ke, 2022. "Analysis of dependent left-truncated and right-censored competing risks data with partially observed failure causes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 285-307.
    8. Kundu, Debasis & Mitra, Debanjan & Ganguly, Ayon, 2017. "Analysis of left truncated and right censored competing risks data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 12-26.
    9. Shuto, Susumu & Amemiya, Takashi, 2022. "Sequential Bayesian inference for Weibull distribution parameters with initial hyperparameter optimization for system reliability estimation," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    10. Emura, Takeshi & Lai, Ching-Chieh & Sun, Li-Hsien, 2023. "Change point estimation under a copula-based Markov chain model for binomial time series," Econometrics and Statistics, Elsevier, vol. 28(C), pages 120-137.
    11. Ying Zhou & Liang Wang & Tzong-Ru Tsai & Yogesh Mani Tripathi, 2023. "Estimation of Dependent Competing Risks Model with Baseline Proportional Hazards Models under Minimum Ranked Set Sampling," Mathematics, MDPI, vol. 11(6), pages 1-30, March.
    12. Fabrizio Durante & Erich Klement & Carlo Sempi & Manuel Úbeda-Flores, 2010. "Measures of non-exchangeability for bivariate random vectors," Statistical Papers, Springer, vol. 51(3), pages 687-699, September.
    13. Ranjan, Rakesh & Sen, Rijji & Upadhyay, Satyanshu K., 2021. "Bayes analysis of some important lifetime models using MCMC based approaches when the observations are left truncated and right censored," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    14. Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
    15. Chengping Gong & Chengxiu Ling, 2018. "Robust Estimations for the Tail Index of Weibull-Type Distribution," Risks, MDPI, vol. 6(4), pages 1-15, October.
    16. Zhang, Jianchun & Zhao, Yu & Ma, Xiaobing, 2020. "Reliability modeling methods for load-sharing k-out-of-n system subject to discrete external load," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    17. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    18. Ma, Huijuan & Zhang, Feipeng & Zhou, Yong, 2015. "Composite estimating equation approach for additive risk model with length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 45-53.
    19. Azam Dehgani & Ali Dolati & Manuel Úbeda-Flores, 2013. "Measures of radial asymmetry for bivariate random vectors," Statistical Papers, Springer, vol. 54(2), pages 271-286, May.
    20. Mayer, Alexander & Wied, Dominik, 2023. "Estimation and inference in factor copula models with exogenous covariates," Journal of Econometrics, Elsevier, vol. 235(2), pages 1500-1521.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:62-:d:1009957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.