IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v49y2020i8p1858-1872.html
   My bibliography  Save this article

E-Bayesian estimation and its E-posterior risk of the exponential distribution parameter based on complete and type I censored samples

Author

Listed:
  • Ming Han

Abstract

This article studies E-Bayesian estimation and its E-posterior risk, for failure rate derived from exponential distribution, in the case of the two hyper parameters. In order to measure the estimated risk, the definition of E-posterior risk (expected posterior risk) is proposed based on the definition of E-Bayesian estimation. Moreover, under the different prior distributions of hyper parameters, the formulas of E-Bayesian estimation and formulas of E-posterior risk are given respectively, these estimations are derived based on a conjugate prior distribution for the unknown parameter under the squared error loss function. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation and a real data set have been analyzed for illustrative purposes, results are compared on the basis of E-posterior risk.

Suggested Citation

  • Ming Han, 2020. "E-Bayesian estimation and its E-posterior risk of the exponential distribution parameter based on complete and type I censored samples," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(8), pages 1858-1872, April.
  • Handle: RePEc:taf:lstaxx:v:49:y:2020:i:8:p:1858-1872
    DOI: 10.1080/03610926.2019.1565837
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2019.1565837
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2019.1565837?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Zhou & Liang Wang & Tzong-Ru Tsai & Yogesh Mani Tripathi, 2023. "Estimation of Dependent Competing Risks Model with Baseline Proportional Hazards Models under Minimum Ranked Set Sampling," Mathematics, MDPI, vol. 11(6), pages 1-30, March.
    2. Zhiyuan Zuo & Liang Wang & Yuhlong Lio, 2022. "Reliability Estimation for Dependent Left-Truncated and Right-Censored Competing Risks Data with Illustrations," Energies, MDPI, vol. 16(1), pages 1-25, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:49:y:2020:i:8:p:1858-1872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.