IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v64y2013icp299-313.html
   My bibliography  Save this article

Objective Bayesian analysis for bivariate Marshall–Olkin exponential distribution

Author

Listed:
  • Guan, Qiang
  • Tang, Yincai
  • Xu, Ancha

Abstract

The Bayesian estimators for the unknown parameters of the bivariate Marshall–Olkin exponential distribution under noninformative priors have been considered and several reference priors have been derived. A class of priors is found by matching the coverage probability of one-side Bayesian credible intervals with the corresponding frequentist coverage probabilities. It is noted that some of the reference priors are also matching priors and the posterior distributions based on the reference priors and matching priors are proper. Closed forms of Bayesian estimators are obtained with respect to the quadratic loss function. Gibbs sampling is utilized to obtain the credible intervals and coverage probabilities of parameters. Comparisons in the efficiency of the maximum likelihood estimators and Bayesian estimators under different reference priors and matching priors for various sample sizes have been done by Monte Carlo simulations. A real data set is analyzed for illustrative purpose.

Suggested Citation

  • Guan, Qiang & Tang, Yincai & Xu, Ancha, 2013. "Objective Bayesian analysis for bivariate Marshall–Olkin exponential distribution," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 299-313.
  • Handle: RePEc:eee:csdana:v:64:y:2013:i:c:p:299-313
    DOI: 10.1016/j.csda.2013.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313001230
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Karlis, 2003. "ML estimation for multivariate shock models via an EM algorithm," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 817-830, December.
    2. Xu, Ancha & Tang, Yincai, 2011. "Objective Bayesian analysis of accelerated competing failure models under Type-I censoring," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2830-2839, October.
    3. Kundu, Debasis & Gupta, Rameshwar D., 2009. "Bivariate generalized exponential distribution," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 581-593, April.
    4. G. Heinrich & U. Jensen, 1995. "Parameter estimation for a bivariate lifetime distribution in reliability with multivariate extensions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 42(1), pages 49-65, December.
    5. Shamseldin, A. A. & Press, S. James, 1984. "Bayesian parameter and reliability estimation for a bivariate exponential distribution parallel sampling," Journal of Econometrics, Elsevier, vol. 24(3), pages 363-378, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiyuan Zuo & Liang Wang & Yuhlong Lio, 2022. "Reliability Estimation for Dependent Left-Truncated and Right-Censored Competing Risks Data with Illustrations," Energies, MDPI, vol. 16(1), pages 1-25, December.
    2. Ying Zhou & Liang Wang & Tzong-Ru Tsai & Yogesh Mani Tripathi, 2023. "Estimation of Dependent Competing Risks Model with Baseline Proportional Hazards Models under Minimum Ranked Set Sampling," Mathematics, MDPI, vol. 11(6), pages 1-30, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kundu, Debasis & Franco, Manuel & Vivo, Juana-Maria, 2014. "Multivariate distributions with proportional reversed hazard marginals," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 98-112.
    2. Mercier, Sophie & Pham, Hai Ha, 2017. "A bivariate failure time model with random shocks and mixed effects," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 33-51.
    3. Debasis Kundu, 2022. "Bivariate Semi-parametric Singular Family of Distributions and its Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 846-872, November.
    4. Kundu, Debasis & Gupta, Arjun K., 2013. "Bayes estimation for the Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 271-281.
    5. Erhard Cramer & Udo Kamps, 2001. "Estimation with Sequential Order Statistics from Exponential Distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(2), pages 307-324, June.
    6. Christian Hering & Jan-Frederik Mai, 2012. "Moment-based estimation of extendible Marshall-Olkin copulas," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 601-620, July.
    7. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.
    8. Herbert Hove & Frank Beichelt & Parmod K. Kapur, 2017. "Estimation of the Frank copula model for dependent competing risks in accelerated life testing," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 673-682, December.
    9. Kundu, Debasis & Dey, Arabin Kumar, 2009. "Estimating the parameters of the Marshall-Olkin bivariate Weibull distribution by EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 956-965, February.
    10. Ji Hwan Cha & Massimiliano Giorgio, 2018. "Modelling of Marginally Regular Bivariate Counting Process and its Application to Shock Model," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1137-1154, December.
    11. Wang, Liang & Tripathi, Yogesh Mani & Dey, Sanku & Zhang, Chunfang & Wu, Ke, 2022. "Analysis of dependent left-truncated and right-censored competing risks data with partially observed failure causes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 285-307.
    12. Li, Yang & Sun, Jianguo & Song, Shuguang, 2012. "Statistical analysis of bivariate failure time data with Marshall–Olkin Weibull models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2041-2050.
    13. Sabrina Mulinacci, 2018. "Archimedean-based Marshall-Olkin Distributions and Related Dependence Structures," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 205-236, March.
    14. Debasis Kundu, 2022. "Stationary GE-Process and its Application in Analyzing Gold Price Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 575-595, November.
    15. Saralees Nadarajah, 2011. "The exponentiated exponential distribution: a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(3), pages 219-251, September.
    16. Célestin C. Kokonendji & Sobom M. Somé, 2021. "Bayesian Bandwidths in Semiparametric Modelling for Nonnegative Orthant Data with Diagnostics," Stats, MDPI, vol. 4(1), pages 1-22, March.
    17. Debasis Kundu, 2021. "Stationary GE-Process and its Application in Analyzing Gold Price Data," Papers 2201.02568, arXiv.org.
    18. Mehdi Basikhasteh & Iman Makhdoom, 2022. "Bayesian inference of bivariate Weibull geometric model based on LINEX and quadratic loss functions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 867-880, April.
    19. Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.
    20. Muhammed, Hiba Z., 2020. "On a bivariate generalized inverted Kumaraswamy distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:64:y:2013:i:c:p:299-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.