IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v100y2013i4p877-888.html
   My bibliography  Save this article

Semiparametric estimation for the additive hazards model with left-truncated and right-censored data

Author

Listed:
  • Chiung-Yu Huang
  • Jing Qin

Abstract

Survival data from prevalent cases collected under a cross-sectional sampling scheme are subject to left-truncation. When fitting an additive hazards model to left-truncated data, the conditional estimating equation method (Lin & Ying, 1994), obtained by modifying the risk sets to account for left-truncation, can be very inefficient, as the marginal likelihood of the truncation times is not used in the estimation procedure. In this paper, we use a pairwise pseudolikelihood to eliminate nuisance parameters from the marginal likelihood and, by combining the marginal pairwise pseudo-score function and the conditional estimating function, propose an efficient estimator for the additive hazards model. The proposed estimator is shown to be consistent and asymptotically normally distributed with a sandwich-type covariance matrix that can be consistently estimated. Simulation studies show that the proposed estimator is more efficient than its competitors. A data analysis illustrates application of the method. Copyright 2013, Oxford University Press.

Suggested Citation

  • Chiung-Yu Huang & Jing Qin, 2013. "Semiparametric estimation for the additive hazards model with left-truncated and right-censored data," Biometrika, Biometrika Trust, vol. 100(4), pages 877-888.
  • Handle: RePEc:oup:biomet:v:100:y:2013:i:4:p:877-888
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ast039
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianyi Lu & Shuwei Li & Liuquan Sun, 2023. "Combined estimating equation approaches for the additive hazards model with left-truncated and interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 672-697, July.
    2. Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
    3. Ma, Huijuan & Zhang, Feipeng & Zhou, Yong, 2015. "Composite estimating equation approach for additive risk model with length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 45-53.
    4. Peijie Wang & Danning Li & Jianguo Sun, 2021. "A pairwise pseudo‐likelihood approach for left‐truncated and interval‐censored data under the Cox model," Biometrics, The International Biometric Society, vol. 77(4), pages 1303-1314, December.
    5. Peng Liu & Kwun Chuen Gary Chan & Ying Qing Chen, 2023. "On a simple estimation of the proportional odds model under right truncation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 537-554, July.
    6. Chyong-Mei Chen & Pao-sheng Shen & Yi Liu, 2021. "On semiparametric transformation model with LTRC data: pseudo likelihood approach," Statistical Papers, Springer, vol. 62(1), pages 3-30, February.
    7. Sam Efromovich & Jufen Chu, 2018. "Hazard rate estimation for left truncated and right censored data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 889-917, August.
    8. Fan Wu & Sehee Kim & Jing Qin & Rajiv Saran & Yi Li, 2018. "A pairwise likelihood augmented Cox estimator for left†truncated data," Biometrics, The International Biometric Society, vol. 74(1), pages 100-108, March.
    9. Zhiyuan Zuo & Liang Wang & Yuhlong Lio, 2022. "Reliability Estimation for Dependent Left-Truncated and Right-Censored Competing Risks Data with Illustrations," Energies, MDPI, vol. 16(1), pages 1-25, December.
    10. Prabhashi W. Withana Gamage & Christopher S. McMahan & Lianming Wang, 2023. "A flexible parametric approach for analyzing arbitrarily censored data that are potentially subject to left truncation under the proportional hazards model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 188-212, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:100:y:2013:i:4:p:877-888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.